Search Results

You are looking at 1 - 10 of 15 items for

  • Author: Matt Spencer x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Live S. Luteberget and Matt Spencer

Purpose:

International women’s team handball is a physically demanding sport and is intermittent in nature. The aim of the study was to profile high-intensity events (HIEs) in international women’s team handball matches with regard to playing positions.

Methods:

Twenty female national-team handball players were equipped with inertial movement units (OptimEye S5, Catapult Sports, Australia) in 9 official international matches. Players were categorized in 4 different playing positions: backs, wings, pivots, and goalkeepers (GKs). PlayerLoad™, accelerations (Acc), changes of direction (CoD), decelerations (Dec), and the sum of the latter 3, HIEs, were extracted from raw-data files using the manufacturer’s software. All Acc, Dec, CoD, and HIEs >2.5 m/s were included. Data were log-transformed and differences were standardized for interpretation of magnitudes and reported with effect-size statistics.

Results:

Mean numbers of events were 0.7 ± 0.4 Acc/min, 2.3 ± 0.9 Dec/min, and 1.0 ± 0.4 CoD/min. Substantial differences between playing positions, ranging from small to very large, were found in the 3 parameters. Backs showed a most likely greater frequency for HIE/min (5.0 ± 1.1 HIE/min) than all other playing positions. Differences between playing positions were also apparent in PlayerLoad/min.

Conclusion:

HIEs in international women’s team handball are position specific, and the overall intensity depends on the positional role within a team. Specific HIE and intensity profiles from match play provide useful information for a better understanding of the overall game demands and for each playing position.

Restricted access

Martin Buchheit, Matt Spencer, and Said Ahmaidi

Purpose:

Two studies involving 122 handball players were conducted to assess the reliability, usefulness, and validity of a repeated shuttle-sprint and jump ability (RSSJA) test. The test consisted of 6 × (2 × 12.5-m) sprints departing on 25 s, with a countermovement jump performed during recovery between sprints.

Methods:

For the reliability and usefulness study, 14 well-trained male handball players performed the RSSJA test 7 d apart. Reliability of the test variables was assessed by the typical error of measurement, expressed as a coefficient of variation (CV). The minimal changes likely to be “real” in sprint time and jump power were also calculated. For the validity study, players of seven teams (national to international levels, women and men) performed the RSSJA test.

Results:

CV values for best and mean sprint time were 1.0% (90% CL, 0.7 to 1.6) and 1.0% (90% CL, 0.7 to 1.4). CV values for best and mean jump peak power were 1.7% (90% CL, 1.2 to 2.7) and 1.5% (90% CL, 1.1 to 2.5). The percent sprint and jump decrements were less reliable, with CVs of 22.3% (90% CL, 15.7 to 38.3) and 34.8% (90% CL, 24.2 to 61.8). Minimal changes likely to be “real” for mean sprint time and jumping peak power were -2.6% and 4.8%. Qualitative analysis revealed that the majority of between-team differences were rated as “almost certain” (ie, 100% probability that the true differences were meaningful) for mean sprint and jump performances.

Conclusion:

The RSSJA test is reliable and valid to assess repeated explosive effort sequences in team sports such as handball. Test results are likely to be representative of gender and competition level; thus the test could be used to discriminate across playing standards and monitor fitness levels.

Restricted access

Tim J. Gabbett, Håvard Wiig, and Matt Spencer

Background:

To the authors’ knowledge, no study has investigated the concurrent repeated, high-intensity (RHIA) and repeated-sprint activity (RSA) of intermittent team-sport competition.

Purpose:

In this study, they report on the RSA of elite women’s football competition. In addition, they describe the nature of RHIA (eg, striding and sprinting activities) that involve a high energy cost and are associated with short (ie, ≤20 s) recovery periods.

Methods:

Thirteen elite women soccer players underwent video-based time–motion analysis on 34 occasions during national and international standard matches. RSA and RHIA were defined as successive (ie, 2) sprints or striding and sprinting efforts that occurred with ≤20 s between efforts.

Results:

The number of RSA and RHIA bouts performed was similar between the first and second halves of matches. Sprinting and striding/sprinting durations tended to remain relatively stable irrespective of the number of efforts in an RSA or RHIA bout or the period of play. However, recovery duration between efforts increased in the second half, when a greater number of efforts were performed per bout.

Conclusion:

These findings suggest that first- to second-half reductions in RHIA and RSA do not occur in elite women’s soccer competition. However, players increase the amount of low-intensity recovery undertaken between RHIA and RSA efforts, most likely in an attempt to maintain RHIA and RSA performance. These findings emphasize the importance of RSA and RHIA to elite women’s soccer and highlight the importance of training this quality to prevent reductions in performance during competitive match play.

Restricted access

David B. Pyne, Matt Spencer, and Iñigo Mujika

One of the challenges for sports scientists working in football is to balance the needs for routine fitness testing with daily fatigue and well-being monitoring to best manage the physical preparation of players. In this commentary, the authors examine contemporary issues of fitness testing in football to identify ways of improving the value of routine testing and monitoring. A testing program must be well planned and organized to ensure that the results are useful. Different tests can be employed for younger and older players. A rigorous approach to analysis and interpretation of results is desirable, and database management must address both short- and long-term requirements of players, staff, and programs.

Restricted access

Matt Spencer, Thomas Losnegard, Jostein Hallén, and Will G. Hopkins

Analyses of elite competitive performance provide useful information for research and practical applications.

Purpose:

Here the authors analyze performance times of cross-country skiers at international competitions (World Cup, World Championship, and Olympics) in classical and free styles of women’s and men’s distance and sprint events, each with a total of 410–569 athletes competing in 1–44 races at 15–25 venues from seasons 2002 to 2011.

Methods:

A linear mixed model of race times for each event provided estimates of within-athlete race-to-race variability expressed as a coefficient of variation (CV) after adjustment for fixed or random effects of snow conditions, altitude, race length, and competition terrain.

Results:

Within-athlete variability was similar for men and women over various events for all athletes (CV of 1.5–1.8%) and for the annual top-10 athletes (1.1–1.4%). Observed effects of snow conditions and altitude on mean time were substantial (~2%) but mostly unclear, owing to large effects of terrain (CV of 4–10% in top-10 analyses). Predictability of performance was extremely high for all athletes (intraclass correlations of .90–.96) but only trivial to poor for top-10 athletes (men .00–.03, women .03–.35).

Conclusion:

The race-to-race variability of top-ranked skiers is similar to that of other elite endurance athletes. Estimates of the smallest worthwhile performance enhancement (0.3× within-athlete variability) will help researchers and practitioners evaluate strategies affecting performance of elite skiers.

Restricted access

Live S. Luteberget, Benjamin R. Holme, and Matt Spencer

Purpose: To assess the reliability and sensitivity of commercially available inertial measurement units to measure physical activity in team handball. Method: Twenty-two handball players were instrumented with 2 inertial measurement units (OptimEye S5; Catapult Sports, Melbourne, Australia) taped together. They participated in either a laboratory assessment (n = 10) consisting of 7 team handball–specific tasks or field assessment (n = 12) conducted in 12 training sessions. Variables, including PlayerLoad™ and inertial movement analysis (IMA) magnitude and counts, were extracted from the manufacturers’ software. IMA counts were divided into intensity bands of low (1.5–2.5 m·s−1), medium (2.5–3.5 m·s−1), high (>3.5 m·s−1), medium/high (>2.5 m·s−1), and total (>1.5 m·s−1). Reliability between devices and sensitivity was established using coefficient of variation (CV) and smallest worthwhile difference (SWD). Results: Laboratory assessment: IMA magnitude showed a good reliability (CV = 3.1%) in well-controlled tasks. CV increased (4.4–6.7%) in more-complex tasks. Field assessment: Total IMA counts (CV = 1.8% and SWD = 2.5%), PlayerLoad (CV = 0.9% and SWD = 2.1%), and their associated variables (CV = 0.4–1.7%) showed a good reliability, well below the SWD. However, the CV of IMA increased when categorized into intensity bands (2.9–5.6%). Conclusion: The reliability of IMA counts was good when data were displayed as total, high, or medium/high counts. A good reliability for PlayerLoad and associated variables was evident. The CV of the previously mentioned variables was well below the SWD, suggesting that OptimEye’s inertial measurement unit and its software are sensitive for use in team handball.

Restricted access

Håvard Wiig, Thor Einar Andersen, Live S. Luteberget, and Matt Spencer

Purpose: To investigate within-player effect, between-player effect, and individual response of external training load from player tracking devices on session rating of perceived exertion training load (sRPE-TL) in elite football players. Methods: The authors collected sRPE-TL from 18 outfield players in 21 training sessions. Total distance, high-speed running distance (>14.4 m/s), very high-speed running distance (>19.8 m/s), PlayerLoad, PlayerLoad2D, and high-intensity events (HIE > 1.5, HIE > 2.5, and HIE > 3.5 m/s) were extracted from the tracking devices. The authors modeled within-player and between-player effects of single external load variables on sRPE-TL, and multiple levels of variability, using a linear mixed model. The effect of 2 SDs of external load on sRPE-TL was evaluated with magnitude-based inferences. Results: Total distance, PlayerLoad, PlayerLoad2D, and HIE > 1.5 had most likely substantial within-player effects on sRPE-TL (100%–106%, very large effect sizes). Moreover, the authors observed likely substantial between-player effects (12%–19%, small to moderate effect sizes) from the majority of the external load variables and likely to very likely substantial individual responses of PlayerLoad, high-speed running distance, very high-speed running distance, and HIE > 1.5 (19%–30% coefficient of variation, moderate to large effect sizes). Finally, sRPE-TL showed large to very large between-session variability with all external load variables. Conclusions: External load variables with low intensity-thresholds had the strongest relationship with sRPE-TL. Furthermore, the between-player effect of external load and the individual response to external load advocate for monitoring sRPE-TL in addition to external load. Finally, the large between-session variability in sRPE-TL demonstrates that substantial amounts of sRPE-TL in training sessions are not explained by single external load variables.

Restricted access

Eirik H. Wik, Live S. Luteberget, and Matt Spencer

Team handball matches place diverse physical demands on players, which may result in fatigue and decreased activity levels. However, previous speed-based methods of quantifying player activity may not be sensitive for capturing short-lasting team-handball-specific movements.

Purpose:

To examine activity profiles of a women’s team handball team and individual player profiles, using inertial measurement units.

Methods:

Match data were obtained from 1 women’s national team in 9 international matches (N = 85 individual player samples), using the Catapult OptimEye S5. PlayerLoad/min was used as a measure of intensity in 5- and 10-min periods. Team profiles were presented as relative to the player’s match means, and individual profiles were presented as relative to the mean of the 5-min periods with >60% field time.

Results:

A high initial intensity was observed for team profiles and for players with ≥2 consecutive periods of play. Substantial declines in PlayerLoad/min were observed throughout matches for the team and for players with several consecutive periods of field time. These trends were found for all positional categories. Intensity increased substantially in the final 5 min of the first half for team profiles. Activity levels were substantially lower in the 5 min after a player’s most intense period and were partly restored in the subsequent 5-min period.

Discussion:

Possible explanations for the observed declines in activity profiles for the team and individual players include fatigue, situational factors, and pacing. However, underlying mechanisms were not accounted for, and these assumptions are therefore based on previous team-sport studies.

Restricted access

Thomas Losnegard, Martin Andersen, Matt Spencer, and Jostein Hallén

Purpose:

To investigate the effects of an active and a passive recovery protocol on physiological responses and performance between 2 heats in sprint cross-country skiing.

Methods:

Ten elite male skiers (22 ± 3 y, 184 ± 4 cm, 79 ± 7 kg) undertook 2 experimental test sessions that both consisted of 2 heats with 25 min between start of the first and second heats. The heats were conducted as an 800-m time trial (6°, >3.5 m/s, ~205 s) and included measurements of oxygen uptake (VO2) and accumulated oxygen deficit. The active recovery trial involved 2 min standing/walking, 16 min jogging (58% ± 5% of VO2peak), and 3 min standing/walking. The passive recovery trial involved 15 min sitting, 3 min walk/jog (~ 30% of VO2peak), and 3 min standing/walking. Blood lactate concentration and heart rate were monitored throughout the recovery periods.

Results:

The increased 800-m time between heat 1 and heat 2 was trivial after active recovery (effect size [ES] = 0.1, P = .64) and small after passive recovery (ES = 0.4, P = .14). The 1.2% ± 2.1% (mean ± 90% CL) difference between protocols was not significant (ES = 0.3, P = .3). In heat 2, peak and average VO2 was increased after the active recovery protocol.

Conclusions:

Neither passive recovery nor running at ~58% of VO2peak between 2 heats changed performance significantly.

Restricted access

Kerry McGawley, Matt Spencer, Anna Olofsson, and Erik P. Andersson

Context: Warming up in very cold climates and maintaining an elevated body temperature prior to a race is challenging for snow-sport athletes. Purpose: To investigate the effects of active (ACT), passive (PAS), and a combination of ACT and PAS (COM) warm-ups on maximal physical performance in a subzero environment among snow-sport athletes. Methods: Ten junior alpine skiers completed 3 experimental trials in −7.2 (0.2)°C. The ACT involved 5 minutes of moderate cycling, 3 × 15-second accelerations, a 6-second sprint, 5 countermovement jumps (CMJs), and a 10-minute passive transition phase, while in PAS, participants wore a lower-body heated garment for 24 minutes. In COM, participants completed the active warm-up, then wore the heated garment during the transition phase. Two maximal CMJs and a 90-second maximal isokinetic cycling test followed the warm-up. Results: CMJ performance was likely (P = .150) and very likely (P = .013) greater in ACT and COM, respectively, versus PAS. Average power output during the cycling test was likely (P = .074) greater in ACT and COM versus PAS. Participants felt likely to almost certainly warmer (P < .01) and more comfortable (P = .161) during ACT and COM versus PAS. In addition, participants felt likely warmer (P = .136) and very likely more comfortable (P = .161) in COM versus ACT. Conclusions: COM resulted in significantly improved CMJ performance versus PAS while both ACT and COM led to likely improved 90-second cycling performance. Participants felt significantly warmer during ACT and COM versus PAS and likely warmer in COM versus ACT. Therefore, a combined warm-up is recommended for alpine skiers performing in subzero temperatures.