Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Matthew S. Tenan x
  • Refine by Access: All Content x
Clear All Modify Search
Open access

Letter to the Editor

Matthew S. Tenan, Andrew J. Tweedell, and Courtney A. Haynes

Restricted access

Iterative Assessment of Statistically-Oriented and Standard Algorithms for Determining Muscle Onset with Intramuscular Electromyography

Matthew S. Tenan, Andrew J. Tweedell, and Courtney A. Haynes

The onset of muscle activity, as measured by electromyography (EMG), is a commonly applied metric in biomechanics. Intramuscular EMG is often used to examine deep musculature and there are currently no studies examining the effectiveness of algorithms for intramuscular EMG onset. The present study examines standard surface EMG onset algorithms (linear envelope, Teager-Kaiser Energy Operator, and sample entropy) and novel algorithms (time series mean-variance analysis, sequential/batch processing with parametric and nonparametric methods, and Bayesian changepoint analysis). Thirteen male and 5 female subjects had intramuscular EMG collected during isolated biceps brachii and vastus lateralis contractions, resulting in 103 trials. EMG onset was visually determined twice by 3 blinded reviewers. Since the reliability of visual onset was high (ICC(1,1): 0.92), the mean of the 6 visual assessments was contrasted with the algorithmic approaches. Poorly performing algorithms were stepwise eliminated via (1) root mean square error analysis, (2) algorithm failure to identify onset/premature onset, (3) linear regression analysis, and (4) Bland-Altman plots. The top performing algorithms were all based on Bayesian changepoint analysis of rectified EMG and were statistically indistinguishable from visual analysis. Bayesian changepoint analysis has the potential to produce more reliable, accurate, and objective intramuscular EMG onset results than standard methodologies.

Restricted access

Acute:Chronic Workload Ratio: Conceptual Issues and Fundamental Pitfalls

Franco M. Impellizzeri, Matthew S. Tenan, Tom Kempton, Andrew Novak, and Aaron J. Coutts

The number of studies examining associations between training load and injury has increased exponentially. As a result, many new measures of exposure and training-load-based prognostic factors have been created. The acute:chronic workload ratio (ACWR) is the most popular. However, when recommending the manipulation of a prognostic factor in order to alter the likelihood of an event, one assumes a causal effect. This introduces a series of additional conceptual and methodological considerations that are problematic and should be considered. Because no studies have even tried to estimate causal effects properly, manipulating ACWR in practical settings in order to change injury rates remains a conjecture and an overinterpretation of the available data. Furthermore, there are known issues with the use of ratio data and unrecognized assumptions that negatively affect the ACWR metric for use as a causal prognostic factor. ACWR use in practical settings can lead to inappropriate recommendations, because its causal relation to injury has not been established, it is an inaccurate metric (failing to normalize the numerator by the denominator even when uncoupled), it has a lack of background rationale to support its causal role, it is an ambiguous metric, and it is not consistently and unidirectionally related to injury risk. Conclusion: There is no evidence supporting the use of ACWR in training-load-management systems or for training recommendations aimed at reducing injury risk. The statistical properties of the ratio make the ACWR an inaccurate metric and complicate its interpretation for practical applications. In addition, it adds noise and creates statistical artifacts.