Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Matthew T. Wittbrodt x
Clear All Modify Search
Restricted access

Mindy Millard-Stafford, Ann E. Swanson and Matthew T. Wittbrodt

Men outperform women in sports requiring muscular strength and/or endurance, but the relative influence of “nurture” versus “nature” remains difficult to quantify. Performance gaps between elite men and women are well documented using world records in second, centimeter, or kilogram sports. However, this approach is biased by global disparity in reward structures and opportunities for women. Despite policies enhancing female participation (Title IX legislation), US women only closed performance gaps by 2% and 5% in Olympic Trial swimming and running, respectively, from 1972 to 1980 (with no change thereafter through 2016). Performance gaps of 13% in elite middistance running and 8% in swimming (∼4-min duration) remain, the 5% differential between sports indicative of load carriage disadvantages of higher female body fatness in running. Conversely, sprint swimming exhibits a greater sex difference than sprint running, suggesting anthropometric/power advantages unique to swim-block starts. The ∼40-y plateau in the performance gap suggests a persistent dominance of biological influences (eg, longer limb levers, greater muscle mass, greater aerobic capacity, and lower fat mass) on performance. Current evidence suggests that women will not swim or run as fast as men in Olympic events, which speaks against eliminating sex segregation in these individual sports. Whether hormone reassignment sufficiently levels the playing field in Olympic sports for transgender females (born and socialized male) remains an issue to be tackled by sport-governing bodies.

Restricted access

Matthew T. Wittbrodt, Mindy Millard-Stafford, Ross A. Sherman and Christopher C. Cheatham

Purpose:

The impact of mild hypohydration on physiological responses and cognitive performance following exercise-heat stress (EHS) were examined compared with conditions when fluids were ingested ad libitum (AL) or replaced to match sweat losses (FR).

Methods:

Twelve unacclimatized, recreationally-active men (22.2 ± 2.4 y) completed 50 min cycling (60%VO2peak) in the heat (32°C; 65% RH) under three conditions: no fluid (NF), AL, and FR. Before and after EHS, a cognitive battery was completed: Trail making, perceptual vigilance, pattern comparison, match-to-sample, and letter-digit recognition tests.

Results:

Hypohydration during NF was greater compared with AL and FR (NF: -1.5 ± 0.6; AL: -0.3 ± 0.8; FR: -0.1 ± 0.3% body mass loss) resulting in higher core temperature (by 0.4, 0.5 °C), heart rate (by 13 and 15 b·min-1), and physiological strain (by 1.3, 1.5) at the end of EHS compared with AL and FR, respectively. Cognitive performance (response time and accuracy) was not altered by fluid condition; however, mean response time improved (p < .05) for letter-digit recognition (by 56.7 ± 85.8 ms or 3.8%; p < .05) and pattern comparison (by 80.6 ± 57.4 ms or 7.1%; p < .001), but mean accuracy decreased in trail making (by 1.2 ± 1.4%; p = .01) after EHS (across all conditions).

Conclusions:

For recreational athletes, fluid intake effectively mitigated physiological strain induced by mild hypohydration; however, mild hypohydration resulting from EHS elicited no adverse changes in cognitive performance.