Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Matthew W. Wittstein x
Clear All Modify Search
Restricted access

Christopher K. Rhea and Matthew W. Wittstein

Much has been learned about the characteristics of gait in overground and treadmill walking. However, there are many contexts in which overground or treadmill walking might not be possible, such as in home-based physical therapy. In those cases, a surrogate task to index gait behavior would be a valuable tool. Thus, the purpose of this study was to evaluate the stride behavior characteristics of stationary stepping compared with treadmill walking. Healthy young adults (N = 10) preformed two 15-minute tasks: (1) treadmill walking and (2) stationary stepping. Several stride behavior characteristics were recorded, including the number of strides taken, minimum and maximum knee angle, stride interval mean, stride interval standard deviation, and detrended fluctuation analysis (DFA) alpha of the stride interval time series. The results showed that stride behavior was similar between tasks when examined at the group level. However, when individual level analyses were used to examine the reliability of each metric between tasks, poor reliability was observed in most metrics, indicating that stationary stepping may not be an appropriate surrogate task for overground or treadmill walking. These results are discussed in the context of a gait dynamics framework, with attention to task constraints that may have influenced the findings.

Restricted access

Stephen M. Glass, Christopher K. Rhea, Matthew W. Wittstein, Scott E. Ross, John P. Florian and F.J. Haran

Transitioning between different sensory environments is known to affect sensorimotor function and postural control. Water immersion presents a novel environmental stimulus common to many professional and recreational pursuits, but is not well-studied with regard to its sensorimotor effects upon transitioning back to land. The authors investigated the effects of long-duration water immersion on terrestrial postural control outcomes in veteran divers. Eleven healthy men completed a 6-hour thermoneutral pool dive (4.57 m) breathing diver air. Center of pressure was observed before and 15 minutes after the dive under 4 conditions: (1) eyes open/stable surface (Open-Stable); (2) eyes open/foam surface (Open-Foam); (3) eyes closed/stable surface (Closed-Stable); and (4) eyes closed/foam surface (Closed-Foam). Postdive decreases in postural sway were observed in all testing conditions except for Open-Stable. The specific pattern of center of pressure changes in the postdive window is consistent with (1) a stiffening/overregulation of the ankle strategy during Open-Foam, Closed-Stable, and Closed-Foam or (2) acute upweighting of vestibular input along with downweighting of somatosensory, proprioceptive, and visual inputs. Thus, our findings suggest that postimmersion decreases in postural sway may have been driven by changes in weighting of sensory inputs and associated changes in balance strategy following adaptation to the aquatic environment.