Search Results

You are looking at 1 - 10 of 24 items for

  • Author: Maurice R. Yeadon x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Twisting Techniques Used in Dismounts from the Rings

Maurice R. Yeadon

At the 1992 Olympic Games six full twisting double somersault dismounts were recorded with two video cameras during the rings individual apparatus finals in the men's Artistic Gymnastics competition. Angles describing body configuration were determined from video data and were input, together with initial orientation angle values and angular momentum components, into a computer simulation model of aerial movement. Mean absolute deviations between simulation and video after the completion of one half twist were 0.01 rev for somersault, 2.8° for tilt, and 0.08 rev for twist. When the estimate of the initial tilt angle was adjusted by up to 1° these deviations fell to 1.6° for tilt and 0.02 rev for twist. All 6 competitors produced the majority of the tilt using aerial techniques that were predominantly asymmetrical movements of the arms. Contributions to the subsequent removal of tilt were determined using reverse simulations, and again arm movements were the main contributors.

Restricted access

Twisting Double Somersault High Bar Dismounts

Maurice R. Yeadon

At the 1988 Seoul Olympic Games, four double somersault dismounts with one twist and four double somersault dismounts with two twists were filmed using two 16 mm cameras during the men's horizontal bar competitions. Contributions to tilt angle reached at the midtwist position, determined using computer simulations based on modifications of the data obtained from film, were used as measures of the twisting potential of various techniques. The amount of tilt produced was greater when total twist was greater and when the body was tucked rather than straight. The twisting techniques used varied with the timing of the twist within the two somersaults. Contact contributions were larger when there was more twist in the first somersault. When there was little or no twist in the first somersault, the major contribution came from aerial techniques that comprised mainly arm movements and asymmetrical hip movements in the flight phase.

Restricted access

A Method for Obtaining Three-Dimensional Data on Ski Jumping Using Pan and Tilt Cameras

Maurice R. Yeadon

A method is presented for the three-dimensional analysis of ski jumping using two pan and tilt cameras. In each film frame two reference markers are digitized and identified so that a pseudo focal length and three angles defining camera orientation can be calculated from a knowledge of the positions of camera and markers. In each film frame 12 body landmarks are digitized and the films taken by the two cameras are synchronized using the digitized displacement data. The time histories of the center of mass location and 15 angles describing the orientation and configuration of the jumper are calculated. Digitization errors lead to an error of 0.05 m in center of mass location and an error of 1° in orientation angles.

Restricted access

Twisting Techniques Used in Freestyle Aerial Skiing

Maurice R. Yeadon

At the 1988 Calgary Winter Olympics, six triple somersaults with three twists or four twists were filmed using two cameras. Angles describing body configuration and orientation were determined and were used as input into a computer simulation model of aerial movement. It was found that the twist angle of each simulation deviated from the corresponding angle obtained from film by less than 0.08 revolutions during the first somersault of each movement. Contributions to the tilt angle after one somersault were determined using simulations based on modifications of the film data. It was found that of the six competitors, two initiated the twist during the takeoff phase, two initiated the twist during the aerial phase, and two used a combination of both methods.

Restricted access

The Effect of Cost Function on Optimum Technique of the Undersomersault on Parallel Bars

Michael J. Hiley and Maurice R. Yeadon

The undersomersault, or felge, to handstand on parallel bars has become an important skill in Men’s Artistic Gymnastics as it forms the basis of many complex variations. To receive no deductions from the judges, the undersomersault must be performed without demonstrating the use of strength to achieve the final handstand position. Two male gymnasts each performed nine undersomersaults from handstand to handstand while data were recorded using an automatic motion capture system. The highest and lowest scoring trials of each gymnast, as determined by four international judges, were chosen for further analysis. Three optimization criteria were used to generate undersomersault technique during the swing phase of the skill using a computer simulation model: minimization of peak joint torques, minimization of horizontal velocity before release, and maximization of angular momentum. The techniques used by both gymnasts could be explained using the second optimization criterion which facilitated further skill development. The first optimization criterion generated a technique advocated for beginners where strength might be expected to be a limiting factor. The third optimization criterion resulted in a different type of undersomersault movement of greater difficulty according to the FIG Code of Points.

Restricted access

The Margin for Error When Releasing the Asymmetric Bars for Dismounts

Michael J. Hiley and Maurice R. Yeadon

It has previously been shown that male gymnasts using the “scooped” giant circling technique were able to flatten the path followed by their mass center, resulting in a larger margin for error when releasing the high bar (Hiley & Yeadon, 2003a). The circling technique prior to performing double layout somersault dismounts from the asymmetric bars in women's artistic gymnastics appears to be similar to the “traditional” technique used by some male gymnasts on the high bar. It was speculated that as a result the female gymnasts would have margins for error similar to those of male gymnasts who use the traditional technique. However, it is unclear how the technique of the female gymnasts is affected by the need to avoid the lower bar. A 4-segment planar simulation model of the gymnast and upper bar was used to determine the margins for error when releasing the bar for 9 double layout somersault dismounts at the Sydney 2000 Olympics. The elastic properties of the gymnast and bar were modeled using damped linear springs. Model parameters, primarily the inertia and spring parameters, were optimized to obtain a close match between simulated and actual performances in terms of rotation angle (1.2°), bar displacement (0.011 m), and release velocities (<1%). Each matching simulation was used to determine the time window around the actual point of release for which the model had appropriate release parameters to complete the dismount successfully. The margins for error of the 9 female gymnasts (release window 43–102 ms) were comparable to those of the 3 male gymnasts using the traditional technique (release window 79–84 ms).

Restricted access

Evaluation of a Torque-Driven Simulation Model of Tumbling

Maurice R. Yeadon and Mark A. King

The use of computer simulation models in studies of human movement is now widespread. Most of these models, however, have not been evaluated in a quantitative manner in order to establish the level of accuracy that may be expected. Without such an evaluation, little credence should be given to the published results and conclusions. This paper presents a simulation model of tumbling takeoffs which is evaluated by comparing the simulation output with an actual performance of an elite gymnast. A five-segment planar model was developed to simulate tumbling takeoffs. The model comprised rigid foot, leg, thigh, trunk + head, and arm segments with two damped linear springs to represent the elasticity of the tumbling track/ gymnast interface. Torque generators were included at the ankle, knee, hip, and shoulder joints in order to allow each joint to open actively during the takeoff. The model was customized to the elite gymnast by determining subject-specific inertia and torque parameters. Good agreement was found between actual and simulated tumbling performances of a double layout somersault with 1% difference in the linear and angular momenta at takeoff. Allowing the activation timings of the four torque generators to vary resulted in an optimized simulation that was some 0.32 m higher than the evaluation simulation. These simulations suggest the model is a realistic representation of the elite gymnast, since otherwise the model would either fail to reproduce the double layout somersault or would produce a very different optimized solution.

Restricted access

Determining Subject-Specific Torque Parameters for Use in a Torque-Driven Simulation Model of Dynamic Jumping

Mark A. King and Maurice R. Yeadon

This paper describes a method for defining the maximum torque that can be produced at a joint from isovelocity torque measurements on an individual. The method is applied to an elite male gymnast in order to calculate subject-specific joint torque parameters for the knee joint. Isovelocity knee extension torque data were collected for the gymnast using a two-repetition concentric-eccentric protocol over a 75° range of crank motion at preset crank angular velocities ranging from 20 to 250°s–1. During these isovelocity movements, differences of up to 35° were found between the angle of the dynamometer crank and the knee joint angle of the participant. In addition, faster preset crank angular velocities gave smaller ranges of isovelocity motion for both the crank and joint. The simulation of an isovelocity movement at a joint angular velocity of 150°s–1 showed that, for realistic series elastic component extensions, the angular velocity of the joint can be assumed to be the same as the angular velocity of the contractile component during most of the isovelocity trial. Fitting an 18-parameter exponential function to experimental isovelocity joint torque/ angle/ angular velocity data resulted in a surface that was well behaved over the complete range of angular velocities and within the specified range of joint angles used to calculate the surface.

Restricted access

Optimization of Backward Giant Circle Technique on the Asymmetric Bars

Michael J. Hiley and Maurice R. Yeadon

The release window for a given dismount from the asymmetric bars is the period of time within which release results in a successful dismount. Larger release windows are likely to be associated with more consistent performance because they allow a greater margin for error in timing the release. A computer simulation model was used to investigate optimum technique for maximizing release windows in asymmetric bars dismounts. The model comprised four rigid segments with the elastic properties of the gymnast and bar modeled using damped linear springs. Model parameters were optimized to obtain a close match between simulated and actual performances of three gymnasts in terms of rotation angle (1.5°), bar displacement (0.014 m), and release velocities (<1%). Three optimizations to maximize the release window were carried out for each gymnast involving no perturbations, 10-ms perturbations, and 20-ms perturbations in the timing of the shoulder and hip joint movements preceding release. It was found that the optimizations robust to 20-ms perturbations produced release windows similar to those of the actual performances whereas the windows for the unperturbed optimizations were up to twice as large. It is concluded that robustness considerations must be included in optimization studies in order to obtain realistic results and that elite performances are likely to be robust to timing perturbations of the order of 20 ms.

Restricted access

Contributions of Twisting Techniques Used in Backward Somersaults with One Twist

Maurice R. Yeadon and David G. Kerwin

At the 1996 Atlanta Olympic Games, 18 single somersaults with one twist in the women’s compulsory floor exercises were recorded using two video cameras. An 11 segment computer simulation model was used to analyze the twisting techniques used. It was found mat counter-rotation techniques accounted for less than one third of the twist for all gymnasts, indicating that the production of twist was mainly a consequence of the angular momentum and a non-zero tilt angle. Contributions to the tilt angle reached at the mid-twist position were used as measures of the twisting potential of various techniques. Contact techniques accounted for 30% of the tilt produced, the remainder being produced using aerial techniques, which primarily comprised a symmetrical lowering of the arms together with minor contributions from asymmetrical arm and hip movements. There was no evidence of a difference in technique between the highest and lowest scoring competitors.