Search Results

You are looking at 1 - 7 of 7 items for

  • Author: Megan L.R. Ross x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Christopher J. Stevens, Megan L.R. Ross, and Roxanne M. Vogel

Menthol is effective at stimulating thermosensitive neurons that evoke pleasant cooling sensations. Internal application of menthol can be ergogenic for athletes, and hence, addition of menthol to sports nutrition products may be beneficial for athletes. The aim of this study was to develop a menthol energy gel for consumption during exercise and to determine acceptability and preferences for gels with different menthol concentrations. With a randomized, crossover, and double-blind placebo-controlled design, 40 endurance athletes (20 females) ingested an energy gel with a menthol additive at a high (0.5%; HIGH) or low concentration (0.1%; LOW), or a mint-flavored placebo (CON), on separate occasions during outdoor endurance training sessions. The athletes rated the gels for cooling sensation, mint flavor intensity, sweetness, and overall experience and provided feedback. Results are reported as median (interquartile range). Both menthol gels successfully delivered a cooling sensation, with a significantly greater response for HIGH (5.0 [4.0–5.0]) compared with LOW (3.5 [3.0–4.0]; p = .022) and CON (1.0 [1.0–2.0]; p < .0005), and LOW compared with CON (p < .0005). Ratings of mint flavor intensity followed the same trend as cooling sensation, while ratings of overall experience were significantly worse for HIGH (2.0 [1.0–3.0]) compared with LOW (4.0 [2.0–4.0]; p = .001) and CON (4.0 [3.0–4.0]; p < .0005). An energy gel with the addition of menthol at 0.1–0.5% provides a cooling sensation for athletes with a dose–response when ingested during exercise. The 0.1% concentration is recommended to maximize the overall experience of the gel.

Restricted access

Cathryn L. Pruscino, Megan L.R. Ross, John R. Gregory, Bernard Savage, and Troy R. Flanagan

The purpose of this study was to investigate the effects of sodium bicarbonate (NaHCO3), caffeine, and their combination on repeated 200-m freestyle performance. Six elite male freestyle swimmers ingested NaHCO3 (0.3 g/kg; B), caffeine (6.2 ± 0.3 mg/kg; C), a combination of both (B+C), and placebo (P) on 4 separate occasions before completing 2 maximal 200-m freestyle time trials (TT1 and TT2) separated by 30 min. No significant differences (p = .06) were observed for performance in TT1 (B 2:03.01 ± 0:03.68 min, C 2:02.42 ± 0:03.17 min, B+C 2:01.69 ± 0:03.19 min, P 2:03.77 ± 0:03.21 min) or TT2 (B 2:02.62 ± 0:04.16 min, C 2:03.90 ± 0:03.58 min, B+C 2:01.70 ± 0:02.84 min, P 2:04.22 ± 0:03.75 min). The drop-off in performance time from TT1 to TT2, however, was significantly greater when C was ingested than with B (−1.5%, p = .002) or B+C (–1.2%, p = .024). This is likely because of the lower blood pH and slower recovery of blood HCO3 post-TT1 after C ingestion. These findings suggest that the ergogenic benefit of taking C alone for repeated 200-m swimming performance appears limited. When combined with NaHCO3, however, its negative impact on repeated maximal exercise performance is reversed.

Restricted access

Megan L. Ross, Brian Stephens, Chris R. Abbiss, David T. Martin, Paul B. Laursen, and Louise M. Burke

Purpose:

To observe voluntary fluid and carbohydrate intakes and thermoregulatory characteristics of road cyclists during 2 multiday, multiple-stage races in temperate conditions.

Methods:

Ten internationally competitive male cyclists competed in 2 stage races (2009 Tour of Gippsland, T1, n = 5; 2010 Tour of Geelong, T2, n = 5) in temperate conditions (13.2–15.8°C; 54–80% relative humidity). Body mass (BM) was recorded immediately before and after each stage. Peak gastrointestinal temperature (TGI peak) was recorded throughout each stage. Cyclists recalled the types and volumes of fluid and food consumed throughout each stage.

Results:

Although fluid intake varied according to the race format, there were strong correlations between fluid intake and distance across all formats of racing, in both tours (r = .82, r = .92). Within a stage, the relationship between finishing time and fluid intake was trivial. Mean BM change over a stage was 1.3%, with losses >2% BM occurring on 5 out of 43 measured occasions and the fastest competitors incurring lower BM changes. Most subjects consumed carbohydrate at rates that met the new guidelines (30–60 g/h for 2–3 h, ~90 g/h for >3 h), based on event duration. There were consistent observations of TGI peak >39°C during stages of T1 (67%) and T2 (73%) despite temperate environmental conditions.

Conclusion:

This study captured novel effects of highintensity stage racing in temperate environmental conditions. In these conditions, cyclists were generally able to find opportunities to consume fluid and carbohydrate to meet current guidelines. We consistently observed high TGI peak, which merits further investigation.

Restricted access

Vandre C. Figueiredo, Michelle M. Farnfield, Megan L.R. Ross, Petra Gran, Shona L. Halson, Jonathan M. Peake, David Cameron-Smith, and James F. Markworth

Purpose: To determine the acute effects of carbohydrate (CHO) ingestion following a bout of maximal eccentric resistance exercise on key anabolic kinases of mammalian target of rapamycin and extracellular signal-regulated kinase (ERK) pathways. The authors’ hypothesis was that the activation of anabolic signaling pathways known to be upregulated by resistance exercise would be further stimulated by the physiological hyperinsulinemia resulting from CHO supplementation. Methods: Ten resistance-trained men were randomized in a crossover, double-blind, placebo (PLA)-controlled manner to ingest either a noncaloric PLA or 3 g/kg of CHO beverage throughout recovery from resistance exercise. Muscle biopsies were collected at rest, immediately after a single bout of intense lower body resistance exercise, and after 3 hr of recovery. Results: CHO ingestion elevated plasma glucose and insulin concentrations throughout recovery compared with PLA ingestion. The ERK pathway (phosphorylation of ERK1/2 [Thr202/Tyr204], RSK [Ser380], and p70S6K [Thr421/Ser424]) was markedly activated immediately after resistance exercise, without any effect of CHO supplementation. The phosphorylation state of AKT (Thr308) was unchanged postexercise in the PLA trial and increased at 3 hr of recovery above resting with ingestion of CHO compared with PLA. Despite stimulating-marked phosphorylation of AKT, CHO ingestion did not enhance resistance exercise–induced phosphorylation of p70S6K (Thr389) and rpS6 (Ser235/236 and Ser240/244). Conclusion: CHO supplementation after resistance exercise and hyperinsulinemia does not influence the ERK pathway nor the mTORC1 target p70S6K and its downstream proteins, despite the increased AKT phosphorylation.

Restricted access

Christopher J. Stevens, Megan L.R. Ross, Amelia J. Carr, Brent Vallance, Russ Best, Charles Urwin, Julien D. Périard, and Louise Burke

Purpose: Hot-water immersion (HWI) after training in temperate conditions has been shown to induce thermophysiological adaptations and improve endurance performance in the heat; however, the potential additive effects of HWI and training in hot outdoor conditions remain unknown. Therefore, this study aimed to determine the effect of repeated postexercise HWI in athletes training in a hot environment. Methods: A total of 13 (9 female) elite/preelite racewalkers completed a 15-day training program in outdoor heat (mean afternoon high temperature = 34.6°C). Athletes were divided into 2 matched groups that completed either HWI (40°C for 30–40 min) or seated rest in 21°C (CON), following 8 training sessions. Pre–post testing included a 30-minute fixed-intensity walk in heat, laboratory incremental walk to exhaustion, and 10,000-m outdoor time trial. Results: Training frequency and volume were similar between groups (P = .54). Core temperature was significantly higher during immersion in HWI (38.5 [0.3]) than CON (37.8°C [0.2°C]; P < .001). There were no differences between groups in resting or exercise rectal temperature or heart rate, skin temperature, sweat rate, or the speed at lactate threshold 2, maximal O2 uptake, or 10,000-m performance (P > .05). There were significant (P < .05) pre–post differences for both groups in submaximal exercising heart rate (∼11 beats·min−1), sweat rate (0.34–0.55 L·h−1) and thermal comfort (1.2–1.5 arbitrary units), and 10,000-m racewalking performance time (∼3 min). Conclusions: Both groups demonstrated significant improvement in markers of heat adaptation and performance; however, the addition of HWI did not provide further enhancements. Improvements in adaptation appeared to be maximized by the training program in hot conditions.

Restricted access

Nikita C. Fensham, Alannah K.A. McKay, Nicolin Tee, Bronwen Lundy, Bryce Anderson, Aimee Morabito, Megan L.R. Ross, and Louise M. Burke

Previous research investigating single bouts of exercise have identified baseline iron status and circulating concentrations of interleukin-6 (IL-6) as contributors to the magnitude of postexercise hepcidin increase. The current study examined the effects of repeated training bouts in close succession on IL-6 and hepcidin responses. In a randomized, crossover design, 16 elite male rowers completed two trials, a week apart, with either high (1,000 mg) or low (<50 mg) calcium pre-exercise meals. Each trial involved two, submaximal 90-min rowing ergometer sessions, 2.5 hr apart, with venous blood sampled at baseline; pre-exercise; and 0, 1, 2, and 3 hr after each session. Peak elevations in IL-6 (approximately 7.5-fold, p < .0001) and hepcidin (approximately threefold, p < .0001) concentrations relative to baseline were seen at 2 and 3 hr after the first session, respectively. Following the second session, concentrations of both IL-6 and hepcidin remained elevated above baseline, exhibiting a plateau rather than an additive increase (2 hr post first session vs. 2 hr post second session, p = 1.00). Pre-exercise calcium resulted in a slightly greater elevation in hepcidin across all time points compared with control (p = .0005); however, no effect on IL-6 was evident (p = .27). Performing multiple submaximal training sessions in close succession with adequate nutritional support does not result in an amplified increase in IL-6 or hepcidin concentrations following the second session in male elite rowers. Although effects of calcium intake require further investigation, athletes should continue to prioritize iron consumption around morning exercise prior to exercise-induced hepcidin elevations to maximize absorption.

Open access

Alan J. McCubbin, Bethanie A. Allanson, Joanne N. Caldwell Odgers, Michelle M. Cort, Ricardo J.S. Costa, Gregory R. Cox, Siobhan T. Crawshay, Ben Desbrow, Eliza G. Freney, Stephanie K. Gaskell, David Hughes, Chris Irwin, Ollie Jay, Benita J. Lalor, Megan L.R. Ross, Gregory Shaw, Julien D. Périard, and Louise M. Burke

It is the position of Sports Dietitians Australia (SDA) that exercise in hot and/or humid environments, or with significant clothing and/or equipment that prevents body heat loss (i.e., exertional heat stress), provides significant challenges to an athlete’s nutritional status, health, and performance. Exertional heat stress, especially when prolonged, can perturb thermoregulatory, cardiovascular, and gastrointestinal systems. Heat acclimation or acclimatization provides beneficial adaptations and should be undertaken where possible. Athletes should aim to begin exercise euhydrated. Furthermore, preexercise hyperhydration may be desirable in some scenarios and can be achieved through acute sodium or glycerol loading protocols. The assessment of fluid balance during exercise, together with gastrointestinal tolerance to fluid intake, and the appropriateness of thirst responses provide valuable information to inform fluid replacement strategies that should be integrated with event fuel requirements. Such strategies should also consider fluid availability and opportunities to drink, to prevent significant under- or overconsumption during exercise. Postexercise beverage choices can be influenced by the required timeframe for return to euhydration and co-ingestion of meals and snacks. Ingested beverage temperature can influence core temperature, with cold/icy beverages of potential use before and during exertional heat stress, while use of menthol can alter thermal sensation. Practical challenges in supporting athletes in teams and traveling for competition require careful planning. Finally, specific athletic population groups have unique nutritional needs in the context of exertional heat stress (i.e., youth, endurance/ultra-endurance athletes, and para-sport athletes), and specific adjustments to nutrition strategies should be made for these population groups.