Search Results

You are looking at 1 - 10 of 12 items for

  • Author: Michael Bemben x
Clear All Modify Search
Restricted access

Michael J. Hartman, Brandon Clark, Debra A. Bemben, J. Lon Kilgore and Michael G. Bemben

Context:

Many elite athletes use increased daily training frequencies as a means to increase training load without substantial published literature to support this practice.

Purpose:

To compare the physiological responses to twice- and once-daily training sessions with similar training volumes.

Methods:

Ten nationally competitive male weightlifters (age 20.5 ± 1.2 y, body mass 92.9 ± 23.6 kg, training history 5.5 ± 1.5 y) were matched on body mass and training experience, then randomly assigned to train either once or twice daily for 3 wk. Isometric knee-extension strength (ISO), muscle cross-sectional area, vertical-jump peak power, resting hormone concentrations, neuromuscular activation (EMG), and weightlifting performance were obtained before and after the experimental training period.

Results:

All dependent measures before the training intervention were similar for both groups. A 2-way repeated-measures ANOVA did not reveal any significant main effects (group or trial) or interaction effects (group × trial) for any of the dependent variables. There were also no significant group differences when parameters were expressed as percentage change, but the twice-daily training group had a greater percentage change in ISO (+5.1% vs +3.2%), EMG (+20.3% vs +9.1%), testosterone (+10.5% vs +6.4%), and testosterone:cortisol ratio (−10.5% vs +1.3%) than did the once-daily training group.

Conclusions:

There were no additional benefits from increased daily training frequency in national-level male weightlifters, but the increase in ISO and EMG activity for the twice-daily group might provide some rationale for dividing training load in an attempt to reduce the risk of overtraining.

Restricted access

Thomas Ball, Debra Bemben, Michael Bemben and Denise Smith

Edited by Scott B. Going

Restricted access

Thomas Ball, Debra Bemben, Michael Bemben and Denise Smith

Edited by Scott B. Going

Restricted access

Debra Bemben, Michael Bemben, Denise Smith and Daniel Williams

Edited by Scott B. Going

Restricted access

Daniel Williams, Wayne Phillips, Roy Oman, Michael Bemben and Debra Bemben

Edited by Scott B. Going

Restricted access

Daniel Williams, Wayne Phillips, Roy Oman, Michael Bemben and Debra Bemben

Edited by Scott B. Going

Restricted access

Debra Bemben, Michael Bemben, Roy Oman, Wayne Phillips and Daniel Williams

Edited by Scott B. Going

Restricted access

Debra Bemben, Michael Bemben, Roy Oman, Wayne Phillips and Daniel Williams

Edited by Scott B. Going

Restricted access

Debra Bemben, Michael Bemben, Scott Going, Roy Oman, Denise Smith and Dan Williams

Edited by Scott B. Going

Restricted access

Madoka Ogawa, Naotoshi Mitsukawa, Michael G. Bemben and Takashi Abe

Context:

Previous studies investigated the relationship between ultrasound-derived anatomical muscle thickness (MTH) and individual muscle cross-sectional area (CSA) and muscle volume in several limb and trunk muscles; however, the adductor muscle that contributes to hip adduction and pelvic stabilization, as well as balance ability, has not been studied.

Objective:

To examine the relationship between MTH of the lower, middle, and upper thigh measured by B-mode ultrasound and the muscle CSA and volume of adductor muscle obtained by magnetic resonance imaging (MRI) to confirm the possibility of predicting adductor muscle CSA/volume using ultrasound-derived MTH.

Setting:

University research laboratory.

Subjects:

10 men and 10 women (20–41 y old) volunteered to participate in this study.

Main Outcome Measures:

A series of continuous muscle CSAs along the thigh were measured by MRI scans (1.5-T scanner, GE Signa). In each slice, the anatomical CSA of the adductors was analyzed, and the muscle volume was calculated by multiplying muscle CSA by slice thickness. Thigh MTH was measured by B-mode ultrasound (Aloka SSD-500) at 5 sites (anterior 30%, 50%, and 70% and posterior 50% and 70% of thigh length).

Results:

A strong correlation was observed between anterior 30% MTH and 30% adductor CSA in men (r = .845, P < .002) and women (r = .952, P < .001) and in both groups combined (r = .922, P < .001). Anterior 30% MTH was also strongly correlated to adductor muscle volume when combined with thigh length (n = 20, r = .949, P < .001). However, there were moderate or nonsignificant correlations between anterior and posterior 50% and 70% MTH and adductor muscle CSA/volume.

Conclusions:

The results suggest that MTH in the upper portion of anterior thigh best reflects adductor muscle CSA or muscle volume, while the lower portions of the anterior and posterior sites are least likely to predict adductor muscle size.