Search Results

You are looking at 1 - 10 of 16 items for

  • Author: Michael H. Stone x
Clear All Modify Search
Restricted access

Christopher A. Bailey, Kimitake Sato, Angus Burnett and Michael H. Stone

The purpose of this investigation was to determine the existence of bilateral strength and force-production asymmetry and evaluate possible differences based on sex, as well as strength level. Asymmetry was assessed during weight-distribution (WtD) testing, unloaded and lightly loaded static- (SJ) and countermovement-jump (CMJ) testing, and isometric midthigh-pull (IMTP) strength testing. Subjects included 63 athletes (31 male, 32 female) for WtD, SJ, and CMJ tests, while 129 athletes (64 male, 65 female) participated in IMTP testing. Independent-samples t tests were used to determine possible differences in asymmetry magnitude between males and females, as well as between strong and weak athletes. Cohen d effect-size (ES) estimates were also used to estimate difference magnitudes. Statistically different asymmetry levels with moderate to strong ESs were seen between males and females in WtD, 0-kg SJ (peak force [PF]), 20-kg SJ (peak power [PP]), 0-kg CMJ (PF, PP, net impulse), and 20-kg CMJ (PF), but no statistical differences were observed in IMTP variables. Dividing the sample into strong and weak groups produced statistically significant differences with strong ES estimates in IMTP PF and rate of force development, and many ESs in jump symmetry variables increased. The results of this investigation indicate that females may be more prone to producing forces asymmetrically than males during WtD and jumping tasks. Similarly, weaker athletes displayed more asymmetry than stronger athletes. This may indicate that absolute strength may play a larger role in influencing asymmetry magnitude than sex.

Restricted access

Jeni R. McNeal, William A. Sands and Michael H. Stone

Purpose:

The aim of this study was to investigate the effects of a maximal repeated-jumps task on force production, muscle activation and kinematics, and to determine if changes in performance were dependent on gender.

Methods:

Eleven male and nine female athletes performed continuous countermovement jumps for 60 s on a force platform while muscle activation was assessed using surface electromyography. Performances were videotaped and digitized (60 Hz). Data were averaged across three jumps in 10-s intervals from the initial jump to the final 10 s of the test.

Results:

No interaction between time and gender was evident for any variable; therefore, all results represent data collapsed across gender. Preactivation magnitude decreased across time periods for anterior tibialis (AT, P < .001), gastrocnemius (GAS, P < .001) and biceps femoris (BF, P = .03), but not for vastus lateralis (VL, P = .16). Muscle activation during ground contact did not change across time for BF; however, VL, G, and AT showed significant reductions (all P < .001). Peak force was reduced at 40 s compared with the initial jumps, and continued to be reduced at 50 and 60 s (all P < .05). The time from peak force to takeoff was greater at 50 and 60 s compared with the initial jumps (P < .05). Both knee fexion and ankle dorsifexion were reduced across time (both P < .001), whereas no change in relative hip angle was evident (P = .10). Absolute angle of the trunk increased with time (P < .001), whereas the absolute angle of the shank decreased (P < .001).

Conclusions:

In response to the fatiguing task, subjects reduced muscle activation and force production and altered jumping technique; however, these changes were not dependent on gender.

Restricted access

Jenna M. Kraska, Michael W. Ramsey, G. Gregory Haff, Nate Fethke, William A. Sands, Margaret E. Stone and Michael H. Stone

Purpose:

To investigate the relationship between maximum strength and differences in jump height during weighted and unweighted (body weight) static (SJ) and countermovement jumps (CMJ).

Methods:

Sixty-three collegiate athletes (mean ± SD; age= 19.9 ± 1.3 y; body mass = 72.9 ± 19.6 kg; height = 172.8 ± 7.7 cm) performed two trials of the SJ and CMJ with 0 kg and 20 kg on a force plate; and two trials of mid-thigh isometric clean pulls in a custom rack over a force plate (1000-Hz sampling). Jump height (JH) was calculated from fight time. Force-time curve analyses determined the following: isometric peak force (IPF), isometric force (IF) at 50, 90, and 250 ms, and isometric rates of force development (IRFD). Absolute and allometric scaled forces, [absolute force/(body mass0.67)], were used in correlations.

Results:

IPF, IRFD, F50a, F50, F90, and F250 showed moderate/strong correlations with SJ and CMJ height percent decrease from 0 to 20 kg. IPFa and F250a showed weak/moderate correlations with percent height decrease. Comparing strongest (n = 6) to weakest (n = 6): t tests revealed that stronger athletes (IPFa) performed superior to weaker athletes.

Conclusion:

Data indicate the ability to produce higher peak and instantaneous forces and IRFD is related to JH and to smaller differences between weighted and unweighted jump heights. Stronger athletes jump higher and show smaller decrements in JH with load. A weighted jump may be a practical method of assessing relative strength levels.

Restricted access

Timothy J. Suchomel, Kimitake Sato, Brad H. DeWeese, William P. Ebben and Michael H. Stone

The purposes of this study were to examine the effect of ballistic concentric-only half-squats (COHS) on subsequent squat-jump (SJ) performances at various rest intervals and to examine the relationships between changes in SJ performance and bilateral symmetry at peak performance. Thirteen resistance-trained men performed an SJ immediately and every minute up to 10 min on dual force plates after 2 ballistic COHS repetitions at 90% of their 1-repetition-maximum COHS. SJ peak force, peak power, net impulse, and rate of force development (RFD) were compared using a series of 1-way repeated-measures ANOVAs. The percent change in performance at which peak performance occurred for each variable was correlated with the symmetry index scores at the corresponding time point using Pearson correlation coefficients. Statistical differences in peak power (P = .031) existed between rest intervals; however, no statistically significant pairwise comparisons were present (P > .05). No statistical differences in peak force (P = .201), net impulse (P = .064), and RFD (P = .477) were present between rest intervals. The relationships between changes in SJ performance and bilateral symmetry after the rest interval that produced the greatest performance for peak force (r = .300, P = .319), peak power (r = –.041, P = .894), net impulse (r = –.028, P = .927), and RFD (r = –.434, P = .138) were not statistically significant. Ballistic COHS may enhance SJ performance; however, the changes in performance were not related to bilateral symmetry.

Restricted access

Michael H. Stone, William A. Sands, Kyle C. Pierce, Michael W. Ramsey and G. Gregory Haff

Purpose:

To assess the effects of manipulating the loading of successive sets of midthigh clean pulls on the potentiation capabilities of 7 international-level US weightlifters (4 men, 3 women).

Methods:

Isometric and dynamic peak-force characteristics were measured with a force plate at 500 Hz. Velocity during dynamic pulls was measured using 2 potentiometers that were suspended from the top of the right and left sides of the testing system and attached to both ends of the bar. Five dynamic-performance trials were used (in the following order) as the potentiation protocol: women at 60, 80, 100, 120, and 80 kg and men at 60, 140, 180, 220, and 140 kg. Trials 2 vs 5 were specifically analyzed to assess potentiation capabilities. Isometric midthigh pulls were assessed for peak force and rate of force development. Dynamic lifts were assessed for peak force (PF), peak velocity (PV), peak power (PP), and rate of force development (RFD).

Results:

Although all values (PF, PV, PP, and RFD) were higher postpotentiation, the only statistically higher value was found for PV (ICCα = .95, P = .011, η2 = .69).

Conclusions:

Results suggest that manipulating set-loading configuration can result in a potentiation effect when heavily loaded sets are followed by a lighter set. This potentiation effect was primarily characterized by an increase in the PV in elite weightlifters.

Restricted access

Robert E. Keith, Michael H. Stone, Ralph E. Carson, Robert G. Lefavi and Steven J. Fleck

Fourteen trained male anabolic steroid-using bodybuilders (SBBs) (19-41 years) were recruited for the study. Three-day diet records were obtained from SBBs and analyzed. A resting venous blood sample was drawn, and serum/ plasma was subsequently analyzed for various nutritionally related factors. Results showed that mean dietary energy (4,469 ± 1,406 kcal), protein (252 ± 109 g), and vitamin and mineral intakes of SBBs greatly exceeded U.S. Recommended Dietary Allowances. Dietary cholesterol intake was 2.8 times the recommended levels. Mean serum/plasma nutrient concentrations of SBBs were within normal range. However, individual SBBs had a number of serum/ plasma values outside of the normal or recommended range, the most notable of which was hypercalcemia, which was present in 42% of SBBs. Serum/plasma lipids were such as to increase the risk of cardiovascular disease in these subjects.

Restricted access

James J. Hoffmann Jr, Jacob P. Reed, Keith Leiting, Chieh-Ying Chiang and Michael H. Stone

Due to the broad spectrum of physical characteristics necessary for success in field sports, numerous training modalities have been used develop physical preparedness. Sports like rugby, basketball, lacrosse, and others require athletes to be not only strong and powerful but also aerobically fit and able to recover from high-intensity intermittent exercise. This provides coaches and sport scientists with a complex range of variables to consider when developing training programs. This can often lead to confusion and the misuse of training modalities, particularly in the development of aerobic and anaerobic conditioning. This review outlines the benefits and general adaptations to 3 commonly used and effective conditioning methods: high-intensity interval training, repeated-sprint training, and small-sided games. The goals and outcomes of these training methods are discussed, and practical implementations strategies for coaches and sport scientists are provided.

Restricted access

William A. Sands, Cindy Slater, Jeni R. McNeal, Steven Ross Murray and Michael H. Stone

The lay press, scientists, and physicians appear to believe that gymnasts are continually getting smaller and that their “smallness” is a health risk.

Purpose:

To assess the historical changes in the size and age of the US women’s Olympic gymnastics teams from 1956 to 2008.

Methods:

The official records from the US Olympic Committee and USA Gymnastics of Olympic team members were assessed at 2 levels: individual height, mass, age, and body-mass index (BMI) and the team performance scores and rankings. Fourteen Olympic teams with a total of 106 team members, including the alternates, were included. Trend analyses were conducted using linear and polynomial models.

Results:

Simple linear correlations indicated that since 1956, height, mass, age, BMI, and team Olympic rank have been declining. However, second-order polynomial curve fits indicated that in the last 4 Olympic Games the members of the US women’s gymnastics teams have been getting larger.

Conclusion:

Women Olympic gymnasts were getting smaller through approximately the 1980s and early 1990s. Since then the size of these gymnasts has increased. The minimum-age rule modifications may have played a role in athlete size changes along with a shift from the near dominance of the former communist Eastern Bloc.

Restricted access

William A. Sands, Jeni R. McNeal, Michael H. Stone, G. Gregory Haff and Ann M. Kinser

Serious stretching in many sports involves discomfort and is often an early ceiling on improvements.

Purpose:

To continue investigation of the use of vibration to enhance acute range of motion while assessing the influence of vibration and stretching on pressure-to-pain threshold perception.

Methods:

Ten young male gymnasts were assessed for split range of motion. One side split was randomly assigned as the experimental condition, and the other side split was assigned as the control. Both side splits were performed on a vibration device; the experimental condition had the device turned on and the control condition was performed with the device turned off. In addition, the athletes were assessed for pressure-to-pain transition using an algometer on the biceps femoris (stretched muscle) and vastus lateralis (nonstretched muscle) bilaterally.

Results:

Pre-post difference scores between the vibrated split (most improved) and the nonvibrated split were statistically different (P = .001, 95% confidence interval of the difference 2.3 to 5.8 cm). Following the stretching protocol, the force values for the pressure-to-pain threshold comparing the vibrated and nonvibrated biceps femoris muscle were not statistically different. The nonstretched vastus lateralis muscle also showed no statistical difference in pressure-to-pain threshold between the vibration and nonvibration conditions.

Conclusion:

This study showed that vibration improved split range of motion over stretching alone, but did not show a difference in pressure-to-pain perception in either the stretched or nonstretched muscles.

Restricted access

Caleb D. Bazyler, Satoshi Mizuguchi, Ashley A. Kavanaugh, John J. McMahon, Paul Comfort and Michael H. Stone

Purpose: To determine if jumping-performance changes during a peaking phase differed among returners and new players on a female collegiate volleyball team and to determine which variables best explained the variation in performance changes. Methods: Fourteen volleyball players were divided into 2 groups—returners (n = 7) and new players (n = 7)—who completed a 5-wk peaking phase prior to conference championships. Players were tested at baseline before the preseason on measures of the vastus lateralis cross-sectional area using ultrasonography, estimated back-squat 1-repetition maximum, countermovement jump height (JH), and relative peak power on a force platform. Jumping performance, rating of perceived exertion training load, and sets played were recorded weekly during the peaking phase. Results: There were moderate to very large (P < .01, Glass Δ = 1.74) and trivial to very large (P = .07, Δ = 1.09) differences in JH and relative peak power changes in favor of returners over new players, respectively, during the peaking phase. Irrespective of group, 7 of 14 players achieved peak JH 2 wk after the initial overreach. The number of sets played (r = .78, P < .01) and the athlete’s preseason relative 1-repetition maximum (r = .54, P = .05) were the strongest correlates of JH changes during the peaking phase. Conclusions: Returners achieved greater improvements in jumping performance during the peaking phase compared with new players, which may be explained by the returners’ greater relative maximal strength, time spent competing, and training experience. Thus, volleyball and strength coaches should consider these factors when prescribing training during a peaking phase to ensure their players are prepared for important competitions.