Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Michael J. Grey x
Clear All Modify Search
Restricted access

Birgit Larsen, Michael Voigt and Michael J. Grey

The influence of pedaling frequency and crank load on the sensitivity of the soleus short latency stretch reflex (SLR) was examined in nine healthy subjects during pedaling by the use of a custom-built robotic actuator. The SLR decreased successively in downstroke when pedaling frequency increased from 20 to 40 and 60 revolutions per minute at a constant crank load (p = .005). The SLR was unchanged at crank load increases of 2.6 or 5.1 Nm at a constant pedaling frequency (p > .05). Accordingly, it was shown that increased muscle activation level as a consequence of added crank load and increased movement speed does not increase the sensitivity of the soleus SLR.

Restricted access

Michael J. Grey, Charles W. Pierce, Theodore E. Milner and Thomas Sinkjaer

The modulation and strength of the human soleus short latency stretch reflex was investigated by mechanically perturbing the ankle during an unconstrained pedaling task. Eight subjects pedaled at 60 rpm against a preload of 10 Nm. A torque pulse was applied to the crank at various positions during the crank cycle, producing ankle dorsiflexion perturbations of similar trajectory. The stretch reflex was greatest during the power phase of the crank cycle and was decreased to the level of background EMG during recovery. Matched perturbations were induced under static conditions at the same crank angle and background soleus EMG as recorded during the power phase of active pedaling. The magnitude of the stretch reflex during the dynamic condition was not statistically different from that during the static condition throughout the power phase of the movement. The results of this study indicate that the stretch reflex is not depressed during active cycling as has been shown with the H-reflex. This lack of depression may reflect a decreased susceptibility of the stretch reflex to inhibition, possibly originating from presynaptic mechanisms.