Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Milou Beelen x
Clear All Modify Search
Restricted access

Milou Beelen, Louise M. Burke, Martin J. Gibala and Luc J.C. van Loon

During postexercise recovery, optimal nutritional intake is important to replenish endogenous substrate stores and to facilitate muscle-damage repair and reconditioning. After exhaustive endurance-type exercise, muscle glycogen repletion forms the most important factor determining the time needed to recover. Postexercise carbohydrate (CHO) ingestion has been well established as the most important determinant of muscle glycogen synthesis. Coingestion of protein and/or amino acids does not seem to further increase muscle glycogensynthesis rates when CHO intake exceeds 1.2 g · kg−1 · hr−1. However, from a practical point of view it is not always feasible to ingest such large amounts of CHO. The combined ingestion of a small amount of protein (0.2–0.4 g · (0.2−0.4 g · kg−1 · hr−1) with less CHO (0.8 g · kg−1 · hr−1) stimulates endogenous insulin release and results in similar muscle glycogen-repletion rates as the ingestion of 1.2 g · kg−1 · hr−1 CHO. Furthermore, postexercise protein and/or amino acid administration is warranted to stimulate muscle protein synthesis, inhibit protein breakdown, and allow net muscle protein accretion. The consumption of ~20 g intact protein, or an equivalent of ~9 g essential amino acids, has been reported to maximize muscle protein-synthesis rates during the first hours of postexercise recovery. Ingestion of such small amounts of dietary protein 5 or 6 times daily might support maximal muscle protein-synthesis rates throughout the day. Consuming CHO and protein during the early phases of recovery has been shown to positively affect subsequent exercise performance and could be of specific benefit for athletes involved in multiple training or competition sessions on the same or consecutive days.

Restricted access

Milou Beelen, Jort Berghuis, Ben Bonaparte, Sam B. Ballak, Asker E. Jeukendrup and Luc J.C van Loon

It has been reported previously that mouth rinsing with a carbohydrate-containing solution can improve cycling performance. The purpose of the current study was to investigate the impact of such a carbohydrate mouth rinse on exercise performance during a simulated time trial in a more practical, postprandial setting. Fourteen male endurance-trained athletes were selected to perform 2 exercise tests in the morning after consuming a standardized breakfast. They performed an ~1-hr time trial on a cycle ergometer while rinsing their mouths with either a 6.4% maltodextrin solution (CHO) or water (PLA) after every 12.5% of the set amount of work. Borg’s rating of perceived exertion (RPE) was assessed after every 25% of the set amount of work, and power output and heart rate were recorded continuously throughout the test. Performance time did not differ between treatments and averaged 68.14 ± 1.14 and 67.52 ± 1.00 min in CHO and PLA, respectively (p = .57). In accordance, average power output (265 ± 5 vs. 266 ± 5 W, p = .58), heart rate (169 ± 2 vs. 168 ± 2 beats/min, p = .43), and RPE (16.4 ± 0.3 vs. 16.7 ± 0.3 W, p = .26) did not differ between treatments. Furthermore, after dividing the trial into 8s, no differences in power output, heart rate, or perceived exertion were observed over time between treatments. Carbohydrate mouth rinsing does not improve time-trial performance when exercise is performed in a practical, postprandial setting.

Restricted access

James A. Betts, Milou Beelen, Keith A. Stokes, Wim H.M. Saris and Luc J.C. van Loon

Nocturnal endocrine responses to exercise performed in the evening and the potential role of nutrition are poorly understood. To gain novel insight, 10 healthy men ingested carbohydrate with (C+P) and without (C) protein in a randomized order and double-blind manner during 2 hr of interval cycling followed by resistancetype exercise and into early postexercise recovery. Blood samples were obtained hourly throughout 9 hr of postexercise overnight recovery for analysis of key hormones. Muscle samples were taken from the vastus lateralis before and after exercise and then again the next morning (7 a.m.) to calculate mixed-muscle protein fractional synthetic rate (FSR). Overnight plasma hormone concentrations were converted into overall responses (expressed as area under the concentration curve) and did not differ between treatments for either growth hormone (1,464 ± 257 vs. 1,432 ± 164 pg/ml · 540 min) or total testosterone (18.3 ± 1.2 vs. 17.9 ± 1.2 nmol/L · 540 min, C and C+P, respectively). In contrast, the overnight cortisol response was higher with C+P (102 ± 11 nmol/L · 540 min) than with C (81 ± 8 nmol/L · 540 min; p = .02). Mixed-muscle FSR did not differ between C and C+P during overnight recovery (0.062% ± 0.006% and 0.062% ± 0.009%/hr, respectively) and correlated significantly with the plasma total testosterone response (r = .7, p < .01). No correlations with FSR were apparent for the response of growth hormone (r = –.2, p = .4), cortisol (r = .1, p = .6), or the ratio of testosterone to cortisol (r = .2, p = .5). In conclusion, protein ingestion during and shortly after exercise does not modulate the endocrine response or muscle protein synthesis during overnight recovery.

Restricted access

Jorn Trommelen, Milou Beelen, Marjan Mullers, Martin J. Gibala, Luc J.C. van Loon and Naomi M. Cermak

Carbohydrate mouth rinsing during exercise has been suggested to enhance performance of short (45–60 min) bouts of high-intensity (>75% VO2peak) exercise. Recent studies indicate that this performance enhancing effect may be dependent on the prandial state of the athlete. The purpose of this study was to define the impact of a carbohydrate mouth rinse on ~1-hr time trial performance in both the fasted and fed states. Using a double-blind, crossover design, 14 trained male cyclists (27 ± 6 years; 5.0 ± 0.5 W·kg−1) were selected to perform 4 time trials of ~1 hr (1,032 ± 127 kJ) on a cycle ergometer while rinsing their mouths with a 6.4% sucrose solution (SUC) or a noncaloric sweetened placebo (PLA) for 5 s at the start and at every 12.5% of their set amount of work completed. Two trials were performed in an overnight fasted state and two trials were performed 2 h after consuming a standardized breakfast. Performance time did not differ between any of the trials (fasted-PLA: 68.6 ± 7.2; fasted-SUC: 69.6 ± 7.5; fed-PLA: 67.6 ± 6.6; and fed-SUC: 69.0 ± 6.3 min; Prandial State × Mouth Rinse Solution p = .839; main effect prandial state p = .095; main effect mouth rinse solution p = .277). In line, mean power output and heart rate during exercise did not differ between trials. In conclusion, a sucrose mouth rinse does not improve ~1-hr time trial performance in well-trained cyclists when performed in either the fasted or the fed state.