Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Monica Klungland Torstveit x
Clear All Modify Search
Restricted access

Monica Klungland Torstveit, Ida Fahrenholtz, Thomas B. Stenqvist, Øystein Sylta and Anna Melin

Endurance athletes are at increased risk of relative energy deficiency associated with metabolic perturbation and impaired health. We aimed to estimate and compare within-day energy balance in male athletes with suppressed and normal resting metabolic rate (RMR) and explore whether within-day energy deficiency is associated with endocrine markers of energy deficiency. A total of 31 male cyclists, triathletes, and long-distance runners recruited from regional competitive sports clubs were included. The protocol comprised measurements of RMR by ventilated hood and energy intake and energy expenditure to predict RMRratio (measured RMR/predicted RMR), energy availability, 24-hr energy balance and within-day energy balance in 1-hr intervals, assessment of body composition by dual-energy X-ray absorptiometry, and blood plasma analysis. Subjects were categorized as having suppressed (RMRratio < 0.90, n = 20) or normal (RMRratio > 0.90, n = 11) RMR. Despite there being no observed differences in 24-hr energy balance or energy availability between the groups, subjects with suppressed RMR spent more time in an energy deficit exceeding 400 kcal (20.9 [18.8–21.8] hr vs. 10.8 [2.5–16.4], p = .023) and had larger single-hour energy deficits compared with subjects with normal RMR (3,265 ± 1,963 kcal vs. −1,340 ± 2,439, p = .023). Larger single-hour energy deficits were associated with higher cortisol levels (r = −.499, p = .004) and a lower testosterone:cortisol ratio (r = .431, p = .015), but no associations with triiodothyronine or fasting blood glucose were observed. In conclusion, within-day energy deficiency was associated with suppressed RMR and catabolic markers in male endurance athletes.

Restricted access

Anna Melin, Monica Klungland Torstveit, Louise Burke, Saul Marks and Jorunn Sundgot-Borgen

Disordered eating behavior (DE) and eating disorders (EDs) are of great concern because of their associations with physical and mental health risks and, in the case of athletes, impaired performance. The syndrome originally known as the Female Athlete Triad, which focused on the interaction of energy availability, reproductive function, and bone health in female athletes, has recently been expanded to recognize that Relative Energy Deficiency in Sport (RED-S) has a broader range of negative effects on body systems with functional impairments in both male and female athletes. Athletes in leanness-demanding sports have an increased risk for RED-S and for developing EDs/DE. Special risk factors in aquatic sports related to weight and body composition management include the wearing of skimpy and tight-fitting bathing suits, and in the case of diving and synchronized swimming, the involvement of subjective judgments of performance. The reported prevalence of DE and EDs in athletic populations, including athletes from aquatic sports, ranges from 18 to 45% in female athletes and from 0 to 28% in male athletes. To prevent EDs, aquatic athletes should practice healthy eating behavior at all periods of development pathway, and coaches and members of the athletes’ health care team should be able to recognize early symptoms indicating risk for energy deficiency, DE, and EDs. Coaches and leaders must accept that DE/EDs can be a problem in aquatic disciplines and that openness regarding this challenge is important.

Restricted access

Margo Mountjoy, Jorunn Sundgot-Borgen, Louise Burke, Kathryn E. Ackerman, Cheri Blauwet, Naama Constantini, Constance Lebrun, Bronwen Lundy, Anna Melin, Nanna Meyer, Roberta Sherman, Adam S. Tenforde, Monica Klungland Torstveit and Richard Budgett