Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Monica R. Maly x
Clear All Modify Search
Restricted access

Joanne N. Hodder, Tova E. Plashkes, Regan A. Franklin, Heather K. Hickey and Monica R. Maly

Coactivation of the knee extensors and flexors increases knee joint contact forces, which may lead to degradation of the articular surfaces. This study investigated the effect of neuromuscular fatigue induced by submaximal, repetitive, dynamic contractions on coactivation of knee musculature in young and middle-aged women. Data from 10 young women (24.6 ± 1.8 years) and 8 middle-aged women (55.4 ± 4.2 years) were analyzed. Measures included peak knee extension and flexion torques and the average amplitude of surface electromyography of rectus femoris and biceps femoris. Coactivation ratios were calculated from these activations. To induce fatigue, participants completed up to ten sets of 50 concentric knee extension and flexion contractions at 60°/s. A two-factor analysis of variance was used to determine the effect of age and fatigue. The young group showed higher peak torque compared with the middle-aged group (P < .001). During flexion, biceps femoris activity increased after fatigue when both groups were considered together (P = .018). During extension, biceps femoris activity was higher in the middle-aged than young group (P = .043). Middle-aged women exhibited a trend for greater coactivation during knee extension compared with young women (P = .066). This coactivation likely contributed to extension torque decrements in middle-aged women.

Restricted access

Nicholas M. Brisson, Paul W. Stratford, Saara Totterman, José G. Tamez-Peña, Karen A. Beattie, Jonathan D. Adachi and Monica R. Maly

Investigations of joint loading in knee osteoarthritis (OA) typically normalize the knee adduction moment to global measures of body size (eg, body mass, height) to allow comparison between individuals. However, such measurements may not reflect knee size. This study used a morphometric measurement of the cartilage surface area on the medial tibial plateau, which better represents medial knee size. This study aimed to determine whether normalizing the peak knee adduction moment and knee adduction moment impulse during gait to the medial tibial bone–cartilage interface could classify radiographic knee OA severity more accurately than traditional normalization techniques. Individuals with mild (N = 22) and severe (N = 17) radiographic knee OA participated. The medial tibial bone–cartilage interface was quantified from magnetic resonance imaging scans. Gait analysis was performed, and the peak knee adduction moment and knee adduction moment impulse were calculated in nonnormalized units and normalized to body mass, body weight × height, and the medial tibial bone–cartilage interface. Receiver operating characteristic curves compared the ability of each knee adduction moment normalization technique to classify participants according to radiographic disease severity. No normalization technique was superior at distinguishing between OA severities. Knee adduction moments normalized to medial knee size were not more sensitive to OA severity.