Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Mostafa Yaghoubi x
Clear All Modify Search
Restricted access

Mostafa Yaghoubi, Philip W. Fink, Wyatt H. Page, Ali Heydari and Sarah P. Shultz

Purpose: This study examined lower extremity kinematics in healthy weight (HW) and overweight (OW) children during water- and land-based stationary exercises (stationary running, frontal kick, and butt kick) at light submaximal intensity. Methods: Participants included OW (N = 10; body fat percentage: 34.97 [8.60]) and HW (N = 15; body fat percentage: 18.33 [4.87]) children, aged 10 to 13 years. Spatiotemporal data, lower extremity joint kinematics, and rating of perceived exertion (RPE) were collected during water- and land-based stationary exercises. Repeated measures analysis of variance compared kinematic variables and RPE between groups and environments. A polygon area function compared coordination patterns between environments. Results: RPE responses were significantly greater in OW than HW children on land (13.6 [0.7] vs 11.6 [0.7]; P < .001), whereas the RPE responses were similar between groups in water (11.2 [0.7] vs 11.1 [0.8]; P > .05). OW children were significantly more upright than HW children during land-based exercise, whereas there were no differences observed between groups during aquatic-based exercise. The duration of stance and swing phases, angular velocity, and cadence were significantly lower in water than on land. Conclusion: Compared with HW children, OW children performed stationary exercises in a more upright posture on land, with higher RPE. However, these differences diminished in water. Aquatic-based exercise may be effective in minimizing the effects of excess mass on OW children’s ability to complete physical activity.

Restricted access

Mostafa Yaghoubi, Mohamad Mahdi Esfehani, Hossein Asghar Hosseini, Yaser Alikhajeh and Sarah P. Shultz

The aim of this study was to compare muscle activity patterns between inexperienced and experienced water polo players while taking an overhead shot. The study was carried out with a group of 12 water polo players and an inexperienced group of 10 healthy participants. Signals were recorded by surface electromyography from six different muscles. The average and standard deviation of the normalized electrical activity, time to peak, time broadness, and muscle sequencing during the overhead shot were determined for each muscle in both groups and compared with each other. In water polo players, the normalized electrical activities of triceps brachii, pectoralis major, and wrist flexors were greater than other muscles, while in the inexperienced group the triceps brachii specifically played an important role. There was minimal activation of the middle deltoid and biceps brachii in water polo players. Increased times to peak and time broadness of muscles were found in the inexperienced group compared to experienced water polo players; this difference may be explained by different neuromuscular proprioception. Only experienced water polo players activated the observed muscles in a specific sequence, from proximal to distal. Therefore, coaches should emphasize smooth and quick transitions from proximal to distal segments, with less importance placed on individual muscle strengthening.

Restricted access

Mostafa Yaghoubi, Philip W. Fink, Wyatt H. Page and Sarah P. Shultz

Purpose: This study examined differences in lower extremity kinematics and muscle activation patterns between normal weight (NW) and overweight (OW) children during stationary exercises (running in place, frontal kick, and butt kick) at submaximal intensity. Methods: Healthy children (aged 10–13 y) were stratified into OW (n = 10; body fat percentage: 34.97 [8.60]) and NW (n = 15; body fat percentage: 18.33 [4.87]). Electromyography was recorded for rectus femoris, vastus lateralis, biceps femoris, gastrocnemius, and tibialis anterior. In addition, the ratings of perceived exertion and range of motion of hip, knee, and ankle joints were collected during stationary exercises. Repeated-measures analysis of variance compared muscle activation, range of motion, and ratings of perceived exertion between groups and exercises. Friedman test examined sequencing of muscles recruitment. Results: Compared with NW, OW experienced significantly greater ratings of perceived exertion (13.7 [0.8] vs 11.7 [0.7]; P < .001) and electromyography amplitude in all muscles apart from vastus lateralis during stationary exercises. In addition, NW children used more consistent muscles’ recruitment pattern in comparison with OW children. The range of motion was similar between groups at all joints. Conclusion: OW children may adopt a more active neuromuscular strategy to provide greater stability and propulsion during stationary exercises. Stationary exercise can be prescribed to strengthen lower extremity muscles in OW children, but mode and intensity must be considered.