Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Nancy I. Williams x
Clear All Modify Search
Restricted access

Jason R. Carter, Nancy I. Williams and Wojtek J. Chodzko-Zajko

Building departmental visibility and support is essential to the success of any kinesiology unit. This paper provides an overview of different strategies taken by three American Kinesiology Association member departments to advance their respective units. Each program was faced with unique institutional goals and structures, yet each institutional example highlights the shared theme of building strategic partnerships and cultivating a culture of entrepreneurship and innovation. Common strategies across the three institutions included a genuine understanding of university priorities and politics, chair and faculty leadership, strong internal and external communication, a willingness to lead and think creatively, and maintaining a focus on academic and educational excellence.

Restricted access

Nancy I. Williams, Clara V. Etter and Jay L. Lieberman

An understanding of the health consequences of abnormal menstrual function is an important consideration for all exercising women. Menstrual disturbances in exercising women are quite common and range in severity from mild to severe and are often associated with bone loss, low energy availability, stress fractures, eating disorders, and poor performance. The key factor that causes menstrual disturbances is low energy availability created by an imbalance of energy intake and energy expenditure that leads to an energy deficit and compensatory metabolic adaptations to maintain energy balance. Practical guidelines for preventing and treating amenorrhea in exercising women include evidence-based dietary practices designed to achieve optimal energy availability. Other factors such as gynecological age, genetics, and one’s susceptibility to psychological stress can modify an individual’s susceptibility to menstrual disturbances caused by low energy availability. Future research should explore the magnitude of these effects in an effort to move toward more individualized prevention and treatment approaches.

Restricted access

Barry Braun, Nancy I. Williams, Carol Ewing Garber and Matthew Hickey

As the discipline of kinesiology ponders what should compose a kinesiology curriculum, it is worth considering the broad context. What is our responsibility to imbue students with values, viewpoint, and a vocabulary that facilitates their success in a context greater than our discipline? How do we decide what those things are (e.g., professional integrity, analytical thinking, cultural understanding, social responsibility, problem solving, leadership and engaged citizenship, effective communication, working collaboratively, preparation for lifelong learning)? How do we create a curriculum that provides sufficient understanding of disciplinary knowledge and critically important foundational skills? The purpose of this paper is to provide a jumping-off point for deeper discussion of what our students need most and how we can deliver it.

Restricted access

Jenna C. Gibbs, Nancy I. Williams, Jennifer L. Scheid, Rebecca J. Toombs and Mary Jane De Souza

A high drive-for-thinness (DT) score obtained from the Eating Disorder Inventory-2 is associated with surrogate markers of energy deficiency in exercising women. The purposes of this study were to confirm the association between DT and energy deficiency in a larger population of exercising women that was previously published and to compare the distribution of menstrual status in exercising women when categorized as high vs. normal DT. A high DT was defined as a score ≥7, corresponding to the 75th percentile for college-age women. Exercising women age 22.9 ± 4.3 yr with a BMI of 21.2±2.2 kg/m2 were retrospectively grouped as high DT (n = 27) or normal DT (n = 90) to compare psychometric, energetic, and reproductive characteristics. Chi-square analyses were performed to compare the distribution of menstrual disturbances between groups. Measures of resting energy expenditure (REE) (4,949 ± 494 kJ/day vs. 5,406 ± 560 kJ/day, p < .001) and adjusted REE (123 ± 16 kJ/LBM vs. 130 ± 9 kJ/LBM, p = .027) were suppressed in exercising women with high DT vs. normal DT, respectively. Ratio of measured REE to predicted REE (pREE) in the high-DT group was 0.85 ± 0.10, meeting the authors’ operational definition for an energy deficiency (REE:pREE <0.90). A greater prevalence of severe menstrual disturbances such as amenorrhea and oligomenorrhea was observed in the high-DT group (χ2 = 9.3, p = .003) than in the normal-DT group. The current study confirms the association between a high DT score and energy deficiency in exercising women and demonstrates a greater prevalence of severe menstrual disturbances in exercising women with high DT.

Restricted access

Travis Anderson, Sandra J. Shultz, Nancy I. Williams, Ellen Casey, Zachary Kincaid, Jay L. Lieberman and Laurie Wideman

Evidence suggests menstrual cycle variation in the hormone relaxin may have an impact on ligament integrity and may be associated with risk of anterior cruciate ligament injury in physically active women. However, studies to date have only detected relaxin in a small number of participants, possibly due to inter-individual variability, frequency of sample collection, or analytical techniques. Therefore, the purpose of this study was to analyze serial serum samples in moderately active, eumenorrheic women to identify the proportion of women with detectable relaxin concentrations. Secondary analyses were conducted on two independent data sets. Data Set I (DSI; N = 66) participants provided samples for 6 days of menses and 8–10 days of the luteal phase. Data Set II (DSII; N = 15) participants provided samples every 2–3 days for a full menstrual cycle. Samples were analyzed via a relaxin-2 specific ELISA assay. Limit of detection (LOD) was calculated from the empirical assay data. LOD was calculated as 3.57 pg·ml−1. Relaxin concentrations exceeded the LOD in 90.91% (DSI) and 93.33% (DSII) of participants on at least 1 day of sampling. Actual peak values ranged from 0.0 pg·ml−1 to 118.0 pg·ml−1. Relaxin was detectable in a higher proportion of young women representing a broad range of physical activity levels when sampled more frequently. Future studies investigating relaxin should consider sampling on more than 1 day to accurately capture values among normal menstruating women.