Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Nathan T. Jenkins x
Clear All Modify Search
Restricted access

Nathan T. Jenkins, Jennifer L. Trilk, Arpit Singhal, Patrick J. O’Connor and Kirk J. Cureton

The purpose of this experiment was to learn whether low doses of caffeine have ergogenic, perceptual, and metabolic effects during cycling. To determine the effects of 1, 2, and 3 mg/kg caffeine on cycling performance, differentiated ratings of perceived exertion (D-RPE), quadriceps pain intensity, and metabolic responses to cycling exercise, 13 cyclists exercised on a stationary ergometer for 15 min at 80% VO2peak, then, after 4 min of active recovery, completed a 15-min performance ride 60 min after ingesting caffeine or placebo. Work done (kJ/kg) during the performance ride was used as a measure of performance. D-RPE, pain ratings, and expired-gas data were obtained every 3 min, and blood lactate concentrations were obtained at 15 and 30 min. Compared with placebo, caffeine doses of 2 and 3 mg/kg increased performance by 4% (95% CI: 1.0–6.8%, p = .02) and 3% (95% CI: –0.4% to 6.8%, p = .077), respectively. These effects were ergogenic, on average, but varied considerably in magnitude among individual cyclists. There were no effects of caffeine on D-RPE or pain throughout the cycling task. Selected metabolic variables were affected by caffeine, consistent with its known actions. The authors conclude that caffeine preparations of 2 and 3 mg/kg enhanced performance, but future work should aim to explain the considerable interindividual variability of the drug’s ergogenic properties.

Restricted access

Billy T. Hulin, Tim J. Gabbett, Nathan J. Pickworth, Rich D. Johnston and David G. Jenkins

Purpose: To examine relationships among physical performance, workload, and injury risk in professional rugby league players. Methods: Maximal-effort (n = 112) and submaximal (n = 1084) running performances of 45 players were recorded from 1 club over 2 consecutive seasons. Poorer and better submaximal running performance was determined by higher and lower exercise heart rates, respectively. Exponentially weighted moving averages and daily rolling averages were used to assess microtechnology-derived acute and chronic field-based workloads. The associations among within-individual submaximal running performance, workload, and noncontact lower-limb injury were then investigated. Results: The injury risk associated with poorer submaximal performance was “likely” greater than stable (relative risk = 1.8; 90% confidence interval, 0.9–3.7) and better submaximal performance (relative risk = 2.0; 90% confidence interval, 0.9–4.4). Compared with greater submaximal performance, poorer performance was associated with lower chronic workloads (effect size [d] = 0.82 [0.13], large) and higher acute:chronic workload ratios (d = 0.49 [0.14], small). Chronic workload demonstrated a “nearly perfect” positive relationship with maximal-effort running performance (exponentially weighted moving average, R 2 = .91 [.15]; rolling average, R 2 = .91 [.14]). At acute:chronic workload ratios >1.9, no differences in injury risk were found between rolling average and exponentially weighted moving average methods (relative risk = 1.1; 90% confidence interval, 0.3–3.8; unclear). Conclusions: Reductions in submaximal running performance are related with low chronic workloads, high acute:chronic workload ratios, and increased injury risk. These findings demonstrate that a submaximal running assessment can be used to provide information on physical performance and injury risk in professional rugby league players.