Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Nicholas Gant x
Clear All Modify Search
Restricted access

Nicholas Gant, Ajmol Ali and Andrew Foskett

Carbohydrate and caffeine are known to independently improve certain aspects of athletic performance. However, less is understood about physiological and performance outcomes when these compounds are coingested in a rehydration and carbohydrate-replacement strategy. The aim of this study was to examine the influence of adding a moderate dose of caffeine to a carbohydrate solution during prolonged soccer activity. Fifteen male soccer players performed two 90-min intermittent shuttle-running trials. They ingested a carbohydrate-electrolyte solution (CON) providing a total of 1.8 g/kg body mass (BM) of carbohydrate or a similar solution with added caffeine (CAF; 3.7 mg/kg BM). Solutions were ingested 1 hr before exercise and every 15 min during the protocol. Soccer passing skill and countermovement-jump height (CMJ) were quantified before exercise and regularly during exercise. Sprinting performance, heart rate, blood lactate concentration (La) and the subjective experiences of participants were measured routinely. Mean 15-m sprint time was faster during CAF (p = .04); over the final 15 min of exercise mean sprint times were CAF 2.48 ± 0.15 s vs. CON 2.59 ± 0.2 s. Explosive leg power (CMJ) was improved during CAF (52.9 ± 5.8 vs. CON 51.7 ± 5.7 cm, p = .03). Heart rate was elevated throughout CAF, and ratings of pleasure were significantly enhanced. There were no significant differences in passing skill, rating of perceived exertion, La, or body-mass losses between trials. The addition of caffeine to the carbohydrate-electrolyte solution improved sprinting performance, countermovement jumping, and the subjective experiences of players. Caffeine appeared to offset the fatigue-induced decline in self-selected components of performance.

Restricted access

Nicholas Gant, John B. Leiper and Clyde Williams

This study examined gastric emptying, core temperature, and sprint performance during prolonged intermittent shuttle running in 30 °C when ingesting a carbohydrate-electrolyte solution (CES) or favored water (FW). Nine male soccer players performed 60 min of shuttle running, ingesting fluid before exercise and every 15 min during exercise. Gastric emptying was measured using a double-sampling aspiration technique, and intestinal temperature was monitored via ingested capsules. There were no differences between trials in the total fluid volume emptied from the stomach during each exercise period (P = 0.054). The volume emptied every 15 min was 244 ± 67 mL in the CES trial and 273 ± 66 mL in the FW trial. Intestinal temperature was higher during exercise in the CES trial (P = 0.004), and cumulative sprint time was shorter (P = 0.037). Sprint performance was enhanced by the ingestion of a CES, which resulted in elevated core temperatures, and the rate of gastric emptying remained similar between solutions.

Restricted access

Andrew Foskett, Ajmol Ali and Nicholas Gant

There is little evidence regarding the benefits of caffeine ingestion on cognitive function and skillful actions during sporting performance, especially in sports that are multifaceted in their physiological, skill, and cognitive demands.

Purpose:

To examine the influence of caffeine on performance during simulated soccer activity.

Methods:

Twelve male soccer players completed two 90-min soccer-specific intermittent running trials interspersed with tests of soccer skill (LSPT). The trials were separated by 7 days and adhered to a randomized crossover design. On each occasion participants ingested 6 mg/kg body mass (BM) of caffeine (CAF) or a placebo (PLA) in a double-blind fashion 60 min before exercise. Movement time, penalties accrued, and total time were recorded for the LSPT. Physiological and performance markers were measured throughout the protocol. Water (3 ml/kg BM) was ingested every 15 min.

Results:

Participants accrued significantly less penalty time in the CAF trial (9.7 ± 6.6 s vs. PLA 11.6 ± 7.4 s; p = .02), leading to a significantly lower total time in this trial (CAF 51.6 ± 7.7 s vs. PLA 53.9 ± 8.5 s; p = .02). This decrease in penalty time was probably attributable to an increased passing accuracy in the CAF trial (p = .06). Jump height was 2.7% (± 1.1%) higher in the CAF trial (57.1 ± 5.1 cm vs. PLA 55.6 ± 5.1 cm; p = .01).

Conclusions:

Caffeine ingestion before simulated soccer activity improved players’ passing accuracy and jump performance without any detrimental effects on other performance parameters.

Restricted access

Ian Rollo, Clyde Williams, Nicholas Gant and Maria Nute

The purpose of this study was to examine the influences of a carbohydrate (CHO) mouth rinse on self-selected running speeds during a 30-min treadmill run. Ten endurance-trained men performed 2 trials, each involving a 10-min warm-up at 60% VO2max followed by a 30-min run. The run was performed on an automated treadmill that allowed the spontaneous selection of speeds without manual input. Participants were asked to run at speeds that equated to a rating of perceived exertion of 15, mouth rinsing with either a 6% CHO or taste-matched placebo (PLA) solution. In addition to recording self-selected speeds and total distance covered the authors assessed the runners’ subjective feelings. The total distance covered was greater during the CHO than during the PLA trial (p < .05). Faster speeds selected during the first 5 min of exercise corresponded with enhanced feelings of pleasure when mouth rinsing with the CHO solution. Mouth rinsing with a CHO solution increased total distance covered during a self-selected 30-min run in comparison with mouth rinsing with a color- and tastematched placebo.

Restricted access

Gregg Afman, Richard M. Garside, Neal Dinan, Nicholas Gant, James A. Betts and Clyde Williams

Current recommendations for nutritional interventions in basketball are largely extrapolated from laboratory-based studies that are not sport-specific. We therefore adapted and validated a basketball simulation test relative to competitive basketball games using well-trained basketball players (n = 10), then employed this test to evaluate the effects of two common preexercise nutritional interventions on basketball-specific physical and skilled performance. Specifically, in a randomized and counterbalanced order, participants ingested solutions providing either 75 g carbohydrate (sucrose) 45 min before exercise (Study A; n = 10) or 2 × 0.2 g·kg−1 sodium bicarbonate (NaHCO3) 90 and 20 min before exercise (Study B; n = 7), each relative to appropriate placebos (H2O and 2 × 0.14 g·kg−1 NaCl, respectively). Heart rate, sweat rate, pedometer count, and perceived exertion did not systematically differ between the 60-min basketball simulation test and competitive basketball, with a strong positive correlation in heart rate response (r = .9, p < .001). Preexercise carbohydrate ingestion resulted in marked hypoglycemia (< 3.5 mmol·l−1) throughout the first quarter, coincident with impaired sprinting (+0.08 ± 0.05 second; p = .01) and layup shooting performance (8.5/11 versus 10.3/11 baskets; p < .01). However, ingestion of either carbohydrate or sodium bicarbonate before exercise offset fatigue such that sprinting performance was maintained into the final quarter relative to placebo (Study A: –0.07 ± 0.04 second; p < .01 and Study B: -0.08 ± 0.05 second; p = .02), although neither translated into improved skilled (layup shooting) performance. This basketball simulation test provides a valid reflection of physiological demands in competitive basketball and is sufficiently sensitive to detect meaningful changes in physical and skilled performance. While there are benefits of preexercise carbohydrate or sodium bicarbonate ingestion, these should be balanced against potential negative side effects.