Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Nicola Furlan x
Clear All Modify Search
Restricted access

Nicola Furlan, Mark Waldron, Mark Osborne and Adrian J. Gray

Purpose:

To assess the ecological validity of the Rugby Sevens Simulation Protocol (R7SP) and to evaluate its interday reliability.

Methods:

Ten male participants (20 ± 2 y, 74 ± 11 kg) completed 2 trials of the R7SP, separated by 7 d. The R7SP comprised typical running and collision activities, based on data recorded during international rugby sevens match play. Heart rate (HR) was monitored continuously during the R7SP, and the participants’ movements were recorded through a 20-Hz global positioning system unit. Blood lactate and rating of perceived exertion were collected before and immediately after the 1st and 2nd halves of the R7SP.

Results:

The average activity profile was 117 ± 5 m/min, of which 27 ± 2 m/min was covered at high speed, with a calculated energetic demand of 1037 ± 581 J/kg, of which ~40% was expended at a rate above 19 W/kg. Mean HR was 88% ± 4% of maximal HR. Participants spent ~45% ± 27% of time above 90% of maximal HR (t >90%HRmax). There were no significant differences between trials, except for lactate between the halves of the R7SP. The majority of the measured variables demonstrated a between-trials coefficient of variation (CV%) lower than 5%. Blood lactate measurements (14–20% CV) and t >90%HRmax (26% CV) were less reliable variables. In most cases, the calculated moderate worthwhile change was higher than the CV%.

Conclusions:

The R7SP replicates the activity profile and HR responses of rugby sevens match play. It is a reliable simulation protocol that can be used in a research environment to detect systematic worthwhile changes in selected performance variables.

Restricted access

Nicola Furlan, Mark Waldron, Kathleen Shorter, Tim J. Gabbett, John Mitchell, Edward Fitzgerald, Mark A. Osborne and Adrian J. Gray

Purpose:

To investigate temporal variation in running intensity across and within halves and evaluate the agreement between match-analysis indices used to identify fluctuations in running intensity in rugby sevens.

Methods:

Data from a 15-Hz global positioning system (GPS) were collected from 12 elite rugby sevens players during the IRB World Sevens Series (N = 21 full games). Kinematic (eg, relative distance [RD]) and energetic (eg, metabolic power [MP]) match-analysis indices were determined from velocity–time curves and used to investigate between-halves variations. Mean MP and RD were used to identify peak 2-minute periods of play. Adjacent 2-minute periods (prepeak and postpeak) were compared with peak periods to identify changes in intensity. MP and RD were expressed relative to maximal oxygen uptake (V̇O2max) and speed at V̇O2max, respectively, and compared in their ability to describe the intensity of peak periods and their temporal occurrence.

Results:

Small to moderate reductions were present for kinematic (RD; 8.9%) and energetic (MP; 6%) indices between halves. Peak periods (RD = 130 m/min, MP =13 W/kg) were higher (P < .001) than the match average (RD = 94 m/min, MP = 9.5 W/kg) and the prepeak and postpeak periods (P < .001). RD underestimated the intensity of peak periods compared with MP (bias 16%, limits of agreement [LoA] ± 6%). Peak periods identified by RD and MP were temporally dissociated (bias 21 s, LoA ± 212 s).

Conclusions:

The findings suggest that running intensity varies between and within halves; however, the index used will influence both the magnitude and the temporal identification of peak periods.