Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Oliver M. Shannon x
Clear All Modify Search
Restricted access

Matthew J. Barlow, Antonis Elia, Oliver M. Shannon, Angeliki Zacharogianni and Angelica Lodin-Sundstrom

Introduction: The purpose of the present study was to assess the effects of acute nitrate (NO3)-rich beetroot juice (BRJ) supplementation on peripheral oxygen saturation (SpO2), heart rate (HR), and pulmonary gas exchange during submaximal static and dynamic apnea. Methods: Nine (six males and three females) trained apneists (age: 39.6 ± 8.2 years, stature: 170.4 ± 11.5 cm, and body mass: 72.0 ± 11.5 kg) performed three submaximal static apneas at 60%, 70%, and 80% of the participant’s current reported personal best time, followed by three submaximal (∼75% or personal best distance) dynamic apneas following the consumption of either a 70-ml concentrated BRJ (7.7 mmol NO3) or a NO3-depleted placebo (PLA; 0.1 mmol NO3) in double-blind randomized manner. HR and SpO2 were measured via fingertip pulse oximetry at the nadir, and online gas analysis was used to assess pulmonary oxygen uptake (V˙O2) during recovery following breath-holds. Results: There were no differences (p < .05) among conditions for HR (PLA = 59 ± 11 bpm and BRJ = 61 ± 12 bpm), SpO2 (PLA = 83% ± 14% and BRJ = 84% ±9%), or V˙O2 (PLA = 1.00 ± 0.22 L/min and BRJ = 0.97 ± 0.27 L/min). Conclusion: The consumption of 7.7 mmol of beetroot juice supplementation prior to a series of submaximal static and dynamic apneas did not induce a significant change in SpO2, HR, and V˙O2 when compared with placebo. Therefore, there is no apparent physiological response that may benefit free divers as a result of the supplementation.

Restricted access

Amelia Carr, Kerry McGawley, Andrew Govus, Erik P. Andersson, Oliver M. Shannon, Stig Mattsson and Anna Melin

This study investigated the energy, macronutrient, and fluid intakes, as well as hydration status (urine specific gravity), in elite cross-country skiers during a typical day of training (Day 1) and a sprint skiing competition the following day (Day 2). A total of 31 (18 males and 13 females) national team skiers recorded their food and fluid intakes and urine specific gravity was measured on Days 1 and 2. In addition, the females completed the Low Energy Availability in Females Questionnaire to assess their risk of long-term energy deficiency. Energy intake for males was 65 ± 9 kcal/kg on Day 1 versus 58 ± 9 kcal/kg on Day 2 (p = .002) and for females was 57 ± 10 on Day 1 versus 55 ± 5 kcal/kg on Day 2 (p = .445). Carbohydrate intake recommendations of 10–12 g·kg−1·day−1 were not met by 89% of males and 92% of females. All males and females had a protein intake above the recommended 1.2–2.0 g/kg on both days and a postexercise protein intake above the recommended 0.3 g/kg. Of the females, 31% were classified as being at risk of long-term energy deficiency. In the morning of Day 1, 50% of males and 46% of females were dehydrated; on Day 2, this was the case for 56% of males and 38% of females. In conclusion, these data suggest that elite cross-country skiers ingested more protein and less carbohydrate than recommended and one third of the females were considered at risk of long-term energy deficiency. Furthermore, many of the athletes were dehydrated prior to training and competition.