Search Results

You are looking at 1 - 10 of 16 items for

  • Author: Panagiota Klentrou x
Clear All Modify Search
Restricted access

Panagiota Klentrou

Although osteoporosis is considered a geriatric disease, factors affecting bone strength are most influential during child growth and development. This article reviews what is known and still unclear in terms of bone growth, development and adaptation relative to physical activity before and during puberty. Bone is responsive to certain exercise protocols early in puberty and less so in postpubertal years, where bone strength, rather than bone mass, being the outcome of interest. Mechanical loading and high impact exercise promote bone strength. Intense training before and during puberty, however, may negatively affect bone development. Future research should focus on increasing our mechanistic understanding of the manner by which diverse physical stressors alter the integrity of bone. Longitudinal studies that examine the extent to which muscle and bone are comodulated by growth in children are also recommended.

Restricted access

Panagiota Klentrou, Mary Lou Nishio, Michael Plyley and Brock University

The purpose of this study was to compare the ventilatory breakpoints during exercise between young boys and adult men. Twenty-four active volunteers, 12 boys (10.8 ± 0.3 years of age) and 12 men (24.6 ± 1.1 years of age) with similar aerobic power (53.6 ± 4.2 to 55.7 ± 3.5 mlkg−1min−1), participated in the study. Each participant completed a standardized Physical Activity Questionnaire and anthropometric variables were measured. The exercise testing consisted of two graded tests to exhaustion on a treadmill. Heart rates were recorded every minute and gas exchange parameters were obtained every 30 s throughout the tests. Each ventilatory breakpoint was determined using a three-part model. Although the relative VO2peak values were not significantly different between the boys and the young adults, the boys reported significantly (p < .05) higher total activity than the adults. The boys had a significantly higher (p > .05) first ventilatory breakpoint expressed as a percentage of VO2peak than the adults (64.9% vs. 57.7%). Only 50% of the boys demonstrated a discernable VB2, and the VB2 of this group was not significantly different from that of the adults.

Restricted access

Panagiota Klentrou, Jill Slack, Brian Roy and Michel Ladouceur

The effects of 12 wk of exercise training using weighted vests on bone turnover and isokinetic strength were evaluated in postmenopausal women randomly assigned as exercisers (EX; n = 9) or controls (CON; n = 7). Training included 3 multimodal exercise sessions per wk wearing weighted vests. The vest load was progressively increased each wk to a maximum of 15% of body weight. Bone turnover was determined from resting levels of serum osteocalcin and NTx. Knee and ankle strength were measured at 60°/s and 180°/s using an isokinetic dynamometer. After 12 wk, NTx decreased by 14.5% (P ≤ .05) in EX, with no significant changes in osteocalcin. EX also showed a 40% (P ≤ .05) improvement in ankle plantar-flexion strength at 60°/s. Relative body fat significantly decreased and fat-free mass increased in EX. Exercise compliance was 80%. These findings support the use of progressive exercise training using weighted vests in postmenopausal women.

Restricted access

Izabella A. Ludwa, Bareket Falk, Matthew Yao, Lauren Corbett and Panagiota Klentrou

This pilot study compared bone speed of sound (SOS), bone turnover and insulin-like growth factor 1 (IGF-1) between 20 Caucasian, postmenarcheal, adolescent synchronized swimmers (SS) and 20 aged- and maturity-matched nonswimmers (NS). Daily dietary intake and physical activity levels were also assessed. Bone SOS was measured by quantitative ultrasound. Blood samples were analyzed for osteocalcin, cross-linked N-teleopeptide of type I collagen (NTx), IGF-I and 25-OH vitamin D. Although no differences in bone SOS or turnover markers were observed between groups, the lower IGF-1 and vitamin D intake found in synchronized swimmers, in combination with their higher strenuous activity levels, should be further explored.

Restricted access

Bareket Falk, Sarah Braid, Michael Moore, Deborah O’Leary, Phil Sullivan and Panagiota Klentrou

The objective of this study was to assess bone strength using quantitative ultrasound (QUS, Sunlight Omnisense) in pre- and early-pubertal normal weight (NW, % body fat ≤20, n = 28), and overweight (OW, % body fat ≥25, n = 15) boys. Groups were similar in chronological and skeletal age, sexual maturity, sports participation, and calcium intake. Leisure-time physical activity was lower in OW boys. Radial speed of sound (SOS) was similar in the two groups. Tibial SOS, however, was significantly lower in OW compared with NW (3,554 ± 109 vs. 3,646 ± 71 m·s−1, respectively). Among pre- and early-pubertal boys, higher adiposity appears to be associated with lower bone SOS in the lower extremities.

Restricted access

Mathew Yao, Izabella Ludwa, Lauren Corbett, Panagiota Klentrou, Peter Bonsu, Kimberley Gammage and Bareket Falk

Bone properties, reflected by speed of sound (SOS), and physical activity levels were examined in overweight (OW) girls (n = 19) and adolescents (n = 22), in comparison with normal-weight (NW) girls (n = 21) and adolescents (n = 13). Moderate-to-vigorous physical activity (MVPA) was higher in NW than in OW in both age groups. Tibial SOS was lower in OW compared with NW in both age groups. MVPA correlated with tibial SOS, once age was partialed out. The results suggest that overweight girls and adolescents are characterized by low tibial SOS, which may be partially attributed to lower physical activity levels.

Restricted access

Jennifer Dekker, Katlynne Nelson, Nigel Kurgan, Bareket Falk, Andrea Josse and Panagiota Klentrou

This study examined resting levels of catabolic and anabolic osteokines related to Wnt signaling and their responses to a single bout of plyometric exercise in child and adolescent females. Fourteen premenarcheal girls [10.5 (1.8) y old] and 12 postmenarcheal adolescent girls [15.0 (1.0) y old] performed a plyometric exercise trial. One resting and 3 postexercise blood samples (5 min, 1 h, and 24 h postexercise) were analyzed for sclerostin, dickkopf-1 (DKK-1), osteoprotegerin (OPG), receptor activator of nuclear factor kappa-β ligand (RANKL), and transforming growth factors (TGF-β1, TGF-β2, and TGF-β3). Premenarcheal girls had significantly higher resting sclerostin, TGF-β1, TGF-β2, and TGF-β3 than the postmenarcheal girls, with no significant time effect or group-by-time interaction. DKK-1 was higher in premenarcheal compared with postmenarcheal girls. There was an overall significant DKK-1 decrease from baseline to 1 h postexercise, which remained lower than baseline 24 h postexercise in both groups. There was neither a significant group effect nor group-by-time interaction in OPG, RANKL, and their ratio. RANKL decreased 5 min postexercise compared with baseline and remained significantly lower from baseline 24 h following the exercise. No changes were observed in OPG. OPG/RANKL ratio was significantly elevated compared with resting values 1 h postexercise. In young females, high-impact exercise induces an overall osteogenic effect through a transitory suppression of catabolic osteokines up to 24 h following exercise.

Restricted access

John Cairney, John A. Hay, Brent E. Faught, Andreas Flouris and Panagiota Klentrou

It is not known whether children with Developmental Coordination Disorder (DCD) have lower cardiorespiratory fitness (CRF) than children without the disorder, or whether this relationship varies by age and gender. These issues are examined using a cross-sectional assessment of children 9-14 years of age (N = 549). Participants were screened for DCD using the short form Bruininks-Oseretsky Test of Motor Proficiency (BOTMP-SF). A BOTMP-SF age-adjusted standard score at or below the 10th percentile rank on the BOTMP-SF was required to classify a diagnosis for probable DCD. CRF was determined from each participant’s predicted peak-aerobic power using the Léger 20-m shuttle-run test. Children with DCD report lower CRF than children without the disorder and are more likely to be in a high-risk group (≤ 20th percentile in peak VO2). Moreover, 70% of boys with DCD scored at or below the 20th percentile in peak VO2. Further research in a laboratory setting should be conducted to confirm these findings.

Restricted access

Panagiota Klentrou, Kirina Angrish, Nafisa Awadia, Nigel Kurgan, Rozalia Kouvelioti and Bareket Falk

Purpose: This study examined osteokines related to Wnt signaling at rest and in response to plyometric exercise in 12 boys [10.2 (0.4) y] and 12 girls [10.5 (0.4) y]. Methods: One resting (preexercise) and 3 postexercise (5 min, 1 h, and 24 h) blood samples were analyzed for sclerostin, dickkopf-related protein 1 (DKK-1), osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-β ligand (RANKL). Results: Girls had higher resting sclerostin than boys [187.1 (40.1) vs 150.4 (36.4) pg·mL−1, respectively; P = .02]. However, boys had higher DKK-1 [427.7 (142.3) vs 292.8 (48.0) pg·mL−1, respectively; P = .02] and RANKL [3.9 (3.8) vs 1.0 (0.4) pg·mL−1, respectively; P < .01] than girls. In girls, sclerostin significantly decreased 5-minute and 1-hour postexercise (χ2 = 12.7, P = .01), and RANKL significantly decreased 5-minute postexercise (χ2 = 19.1, P < .01) and continued to decrease up to 24-hour postexercise, with large effect sizes. In boys, DKK-1 significantly decreased 1-hour postexercise and remained lower than preexercise 24-hour postexercise (χ2 = 13.0, P = .01). OPG increased in both boys (χ2 = 13.7, P < .01) and girls (χ2 = 11.4, P = .01), with boys having significantly higher OPG at 5-minute and 1-hour postexercise, whereas in girls, this increase was only seen 24-hour postexercise. Conclusion: Plyometric exercise induces an overall anabolic osteokine response favoring osteoblastogenesis over osteoclastogenesis in both boys and girls although the timeline and mechanism(s) may be different.

Restricted access

Bareket Falk, Laura Brunton, Raffy Dotan, Charlotte Usselman, Panagiota Klentrou and Davie Gabriel

Ten prepubertal girls and 15 young women were tested for maximal torque, peak rate of torque development, electro-mechanical delay (EMD), and time to peak rate of torque development during isometric elbow flexion. Absolute peak torque (17.0 ± 7.7 vs. 40.5 ± 8.3 Nm) and peak rate of torque development (105.9 ± 58.6 vs. 297.2 ± 113.0 Nm·s−1) were lower in the girls (p < .05). Normalized to muscle cross sectional area, torque was similar (8.27 ± 2.74 vs. 8.44 ± 1.65 Nm·cm−2), as was peak rate of torque development, normalized to peak torque (6.21 ± 1.94 vs. 7.30 ± 2.26 Nm·s−1/Nm). Both, time to peak rate of torque development (123.8 ± 36.0 vs. 110.5 ± 52.6 ms) and EMD (73.2 ± 28.6 vs. 51.9 ± 25.6 ms), were longer in the girls, although EMD’s difference only approached statistical significance (p = .06). Age-related isometric strength differences in females appear to be mainly muscle-size dependent. However, the time to peak torque and EMD findings suggest differential motor-unit activation which may functionally manifest itself in fast dynamic contractions.