Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Paolo C. Colombani x
Clear All Modify Search
Restricted access

Samuel Mettler, Christof Mannhart and Paolo C. Colombani

Food-guide pyramids help translate nutrient goals into a visual representation of suggested food intake on a population level. No such guidance system has ever been specifically designed for athletes. Therefore, the authors developed a Food Pyramid for Swiss Athletes that illustrates the number of servings per food group needed in relation to the training volume of an athlete. As a first step, an average energy expenditure of 0.1 kcal · kg−1 · min−1 for exercise was defined, which then was translated into servings of different food groups per hour of exercise per day. Variable serving sizes were defined for athletes’ different body-mass categories. The pyramid was validated by designing 168 daily meal plans according to the recommendations of the pyramid for male and female athletes of different body-mass categories and training volumes of up to 4 hr/d. The energy intake of the meal plans met the calculated reference energy requirement by 97% ± 9%. The carbohydrate and protein intakes were linearly graded from 4.6 ± 0.6–8.5 ± 0.8 g · kg−1 · d−1 and 1.6 ± 0.2–1.9 ± 0.2 g · kg−1 · d−1, respectively, for training volumes of 1–4 hr of exercise per day. The average micronutrient intake depended particularly on the dietary energy intake level but was well above the dietary reference intake values for most micronutrients. No tolerable upper intake level was exceeded for any micronutrient. Therefore, this Food Pyramid for Swiss Athletes may be used as a new tool in sports nutrition education (e.g., teaching and counseling).

Restricted access

Paolo C. Colombani, Eva Kovacs, Petra Frey-Rindova, Walter Frey, Wolfgang Langhans, Myrtha Arnold and Caspar Wenk

A field study was performed to investigate the acute influence of a milk protein hydrolysate supplemented drink (CHO+PRO) on metabolism during and after a marathon run compared to the same drink without protein (CHO). Carbohydrate metabolites and hormones were not influenced by CHO+PRO. Levels of plasma free fatty acids were significantly lower and levels of urea and most amino acids were significantly higher with CHO+PRO. Sweat urea and ammonia nitrogen excretion during the run as well as urinary 3-methylhistidine excretion during the entire exercise day was similar with both treatments. Urinary total nitrogen was significantly increased and urinary pH decreased with CHO+PRO. It was concluded that the supplemented protein was absorbed and probably at least partially oxidized during the run and that no obvious negative metabolic effects occurred. CHO+PRO did not acutely affect myofibrillar protein breakdown as assessed by the 3-methylhistidine method: however, total body protein breakdown was not measured.