Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Patrick S. Tucker x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Mohamad S. Motevalli, Vincent J. Dalbo, Reza S. Attarzadeh, Amir Rashidlamir, Patrick S. Tucker, and Aaron T. Scanlan

Purpose:

To evaluate anthropometric measures and serum markers of myostatin-pathway activity after different weight-reduction protocols in wrestlers.

Methods:

Subjects were randomly assigned to a gradual-weight-reduction (GWR) or rapid-weight-reduction (RWR) group. Food logs were collected for the duration of the study. Anthropometric measurements and serum samples were collected after an 8-h fast at baseline and after the weight-reduction intervention. Subjects reduced body mass by 4%. The GWR group restricted calories over 12 d, while the RWR group restricted calories over 2 d. A series of 2 × 5 repeated-measures (RM) ANOVAs was conducted to examine differences in nutrient consumption, while separate 2 × 2 RM ANOVAs were conducted to examine differences in anthropometric measures and serum markers. When applicable, Tukey post hoc comparisons were conducted. Significance for all tests was set at P < .05.

Results:

There were no between-groups differences for any anthropometric measure (P > .05). Subjects in both groups experienced a significant reduction in body mass, fat mass, lean mass, and percent body fat (P < .05). There were no between-groups differences in serum markers of myostatin-pathway activity (P > .05), but subjects in the RWR condition experienced a significant increase in serum myostatin (P < .01), a decrease in follistatin (P < .01), and an increase in myostatin-to-follistatin ratio (P < .001).

Conclusion:

Although there were no between-groups differences for any outcome variables, the serum myostatin-to-follistatin ratio was significantly increased in the RWR group, possibly signaling the early stages of skeletal-muscle catabolism.

Restricted access

Aaron T. Scanlan, Neal Wen, Patrick S. Tucker, Nattai R. Borges, and Vincent J. Dalbo

Purpose:

To compare perceptual and physiological training-load responses during various basketball training modes.

Methods:

Eight semiprofessional male basketball players (age 26.3 ± 6.7 y, height 188.1 ± 6.2 cm, body mass 92.0 ± 13.8 kg) were monitored across a 10-wk period in the preparatory phase of their training plan. Player session ratings of perceived exertion (sRPE) and heart-rate (HR) responses were gathered across base, specific, and tactical/game-play training modes. Pearson correlations were used to determine the relationships between the sRPE model and 2 HR-based models: the training impulse (TRIMP) and summated HR zones (SHRZ). One-way ANOVAs were used to compare training loads between training modes for each model.

Results:

Stronger relationships between perceptual and physiological models were evident during base (sRPE-TRIMP r = .53, P < .05; sRPE-SHRZ r = .75, P < .05) and tactical/game-play conditioning (sRPE-TRIMP r = .60, P < .05; sRPE-SHRZ r = .63; P < .05) than during specific conditioning (sRPE-TRIMP r = .38, P < .05; sRPE-SHRZ r = .52; P < .05). Furthermore, the sRPE model detected greater increases (126–429 AU) in training load than the TRIMP (15–65 AU) and SHRZ models (27–170 AU) transitioning between training modes.

Conclusions:

While the training-load models were significantly correlated during each training mode, weaker relationships were observed during specific conditioning. Comparisons suggest that the HR-based models were less effective in detecting periodized increases in training load, particularly during court-based, intermittent, multidirectional drills. The practical benefits and sensitivity of the sRPE model support its use across different basketball training modes.