Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Patrycja Lipinska x
Clear All Modify Search
Restricted access

Patrycja Lipinska, Sian V. Allen and Will G. Hopkins

Purpose:

Pacing has a substantial effect on endurance performance. The authors characterize pacing and identify its parameters for optimal performance in 1500-m freestyle swimming.

Methods:

Web sites provided 50-m lap and 1500-m race times for 330 swims of 24 elite male swimmers. Pacing for each swim was characterized with 7 parameters derived from a general linear model: linear and quadratic coefficients for the effect of lap number; reductions from predicted time for first, second, penultimate, and last laps; and lap-time variability. Scatter plots of race time vs each parameter for each swimmer were used to identify optimum values of parameters.

Results:

Most scatterplots showed only weak relationships between the parameter and performance, but one-third to one-half of swimmers had an optimum value of the parameter that was substantially different from their mean value. A large improvement in performance time (1.4% ± 0.9%, mean ± SD) could be achieved generally by reversing the sign of the linear parameter to make the slowest lap occur earlier in the race. Small to moderate improvements might also accrue by changing the quadratic parameter, by making the first and second laps slower and the penultimate and last laps faster, and reducing lap-time variability.

Conclusions:

This approach to analysis of pacing may help improve performance in swimmers and other endurance athletes in sports with multiple laps, but data from many competitions are required.

Restricted access

Basilio Pueo, Patrycja Lipinska, José M. Jiménez-Olmedo, Piotr Zmijewski and Will G. Hopkins

Vertical-jump tests are commonly used to evaluate lower-limb power of athletes and nonathletes. Several types of equipment are available for this purpose.

Purpose:

To compare the error of measurement of 2 jump-mat systems (Chronojump-Boscosystem and Globus Ergo Tester) with that of a motion-capture system as a criterion and to determine the modifying effect of foot length on jump height.

Methods:

Thirty-one young adult men alternated 4 countermovement jumps with 4 squat jumps. Mean jump height and standard deviations representing technical error of measurement arising from each device and variability arising from the subjects themselves were estimated with a novel mixed model and evaluated via standardization and magnitude-based inference.

Results:

The jump-mat systems produced nearly identical measures of jump height (differences in means and in technical errors of measurement ≤1 mm). Countermovement and squat-jump height were both 13.6 cm higher with motion capture (90% confidence limits ±0.3 cm), but this very large difference was reduced to small unclear differences when adjusted to a foot length of zero. Variability in countermovement and squat-jump height arising from the subjects was small (1.1 and 1.5 cm, respectively, 90% confidence limits ±0.3 cm); technical error of motion capture was similar in magnitude (1.7 and 1.6 cm, ±0.3 and ±0.4 cm), and that of the jump mats was similar or smaller (1.2 and 0.3 cm, ±0.5 and ±0.9 cm).

Conclusions:

The jump-mat systems provide trustworthy measurements for monitoring changes in jump height. Foot length can explain the substantially higher jump height observed with motion capture.