Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Paul J.B. Willems x
Clear All Modify Search
Restricted access

Hans H.C.M. Savelberg, Ingrid G.L. Van de Port and Paul J.B. Willems

By manipulating trunk angle in ergometer cycling, we studied the effect of body configuration on muscle recruitment and joint kinematics. Changing trunk angle affects the length of muscles that span the hip joint. It is hypothesized that this affects the recruitment of the muscles directly involved, and as a consequence of affected joint torque distributions, also influences the recruitment of more distal muscles and the kinematics of distal joints. It was found that changing the trunk from an upright position to approximately 20 deg forward or backward affected muscle activation patterns and kinematics in the entire lower limb. The knee joint was the only joint not affected by manipulation of the lengths of hip joint muscles. Changes in trunk angle affected ankle and hip joint kinematics and the orientation of the thigh. A similar pattern has been demonstrated for muscle activity: Both the muscles that span the hip joint and those acting on the ankle joint were affected with respect to timing and amplitude of EMG. Moreover, it was found that the association between muscle activity and muscle length was adapted to manipulation of trunk angle. In all three conditions, most of the muscles that were considered displayed some eccentric activity. The ratio of eccentric to concentric activity changed with trunk angle. The present study showed that trunk angle influences muscle recruitment and (inter)muscular dynamics in the entire limb. As this will have consequences for the efficiency of cycling, body configuration should be a factor in bicycle design.

Restricted access

Tom Melai, Nicolaas C. Schaper, T. Herman IJzerman, Paul J.B. Willems, Ton L.H. de Lange, Kenneth Meijer, Aloysius G. Lieverse and Hans H.C.M. Savelberg

Increased forefoot loading in diabetic polyneuropathy plays an important role in the development of plantar foot ulcers and can originate from alterations in muscle strength, joint moments and gait pattern. The current study evaluated whether strength training can improve lower extremity joint moments and spatiotemporal gait characteristics in patients with diabetic polyneuropathy. An intervention group receiving strength training during 24 weeks and a control group receiving no intervention. Measurements were performed in both groups at t = 0, t = 12, t = 24 and t = 52 weeks at an individually preferred and standardized imposed gait velocity. The strength training did not affect the maximal amplitude of hip, knee and ankle joint moments, but did result in an increase in stance phase duration, stride time and stride length of approximately 5%, during the imposed gait velocity. In addition, both groups increased their preferred gait velocity over one year. Future longitudinal studies should further explore the possible effects of strength training on spatiotemporal gait characteristics. The current study provides valuable information on changes in gait velocities and the progressive lower extremity problems in patients with polyneuropathy.