Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Paul M. Vanderburgh x
Clear All Modify Search
Restricted access

Paul M. Vanderburgh

Purpose:

To assess the validity of Boston Marathon qualifying (BMQ) standards for men and women.

Methods:

Percent differences between BMQ and current world records (WR) by sex and age group were computed. WR was chosen as the criterion comparison because it is not confounded by intensity, body composition, lifestyle, or environmental factors. A consistent difference across age groups would indicate an appropriate slope of the age-vs-BMQ curve. Inconsistent differences were corrected by adjusting BMQ standards to achieve a uniform percentage difference from WR.

Results:

BMQ standards for men were consistently ~50% slower than WR (mean 51.5% ± 1.4%, range 49.6–54.4%), thus demonstrating acceptable validity. However, BMQ standards for women indicated convergence with WR as age increased (mean 45.8% ± 13.7%, range 17.5–58.9%). The women’s BMQ standards were revised to yield a consistent 50% deviation from WR across age groups (50.9% ± 0.8%, range 49.2–52.2%). Applied to all 16,773 women in the 2012 Chicago Marathon, the suggested BMQ standards would lead to a 4.90% success rate, compared with 8.39% using the current standard. This compared with a 9.6% success rate for all 20,681 men of the same race.

Conclusions:

The current women’s BMQ standards appear too lenient for women 18–54 y and too strict for women 55–80 y but yield equitable gender representation in percentage of qualifiers. The current men’s and suggested women’s BMQ standards appear valid but would lead to approximately 40% fewer women achieving BMQ standards.

Restricted access

Paul M. Vanderburgh

Previously there existed no efficacious maximal effort, VO2peak prediction test for subjects who, because of injury, can exercise at high intensity only on a device such as a cycle ergometer. This study's purpose was to develop and validate such a test, a 12-Minute Stationary Cycle Ergometer Test (12MSCET), for college-age physically active men and women. For 60 college-age men and women, and a gender-based resistance setting, the total work done on the 12MSCET and body weight were found to be highly predictive of VO2peak, measured via open circuit spirometry. Furthermore, the torques required for such a test are, for this sample, approximately 50% of those required in other predictive protocols. To date, the 12MSCET has been used for VO2peak assessment of over 300 military cadets who, because of injury, found cycling their only efficacious high-intensity aerobic modality.

Restricted access

Paul M. Vanderburgh and Ronald E. DeMeersman

The 12-Minute Stationary Cycle Ergometer Test (12MCET) has been developed and validated as an accurate VO2peak prediction test particularly for the injured (7). Prediction is based on body weight and total work done in 12 min at a resistance setting of 2.5 kp (men) and 2.0 kp (women) on the Monark cycle ergometer. In the development of the 12MCET a small number of subjects stated a preference for a higher resistance setting than 2.5 kp. The purpose of this study was to validate the use of the 12MCET with a resistance setting of 3.0 kp for a sample of 30 college-age men. When applied to the 12MCET, use of the 3.0 kp resistance setting overpredicted actual VO2peak by a mean of 175 ml • min−1 (p = .02). We concluded that the use of a 3.0 kp resistance setting for the 12MCET is inappropriate and that any resistance setting other than that prescribed should not be used without proper validation.

Restricted access

Michael J. Davies, Gail P. Dalsky and Paul M. Vanderburgh

This study employed allometry to scale maximal oxygen uptake (V̇O2 max) by body mass (BM) and lean body mass (LBM) in healthy older men. Ratio standards (ml · kg−1 · min−1) derived by dividing absolute V̇O2 max (L · min−1) by BM or LBM often fail to control for the body size variable. The subjects were 73 older men (mean ± SD: age = 69.7 ± 4.3 yrs, BM = 80.2 ± 9.6 kg, height = 174.1 ± 6.9 cm). V̇O2 max was assessed on a treadmill with the modified Balke protocol (V̇O2 max = 2.2 ± 0.4 L · min−1). Body fat (27.7 ± 6.4%) was assessed with dual energy x-ray absorptiometry. Allometry applied to BM and V̇O2 max determined the BM exponent to be 0.43, suggesting that heavier older men are being penalized when ratio standards are used. Allometric scaling applied to LBM revealed the LBM exponent to be 1.05 (not different from the ratio standard exponent of 1.0). These data suggest that the use of ratio standards to evaluate aerobic fitness in older men penalized fatter older men but not those with higher LBM.

Restricted access

Thomas C. Ball, Samuel A. Headley, Paul M. Vanderburgh and John C. Smith

The purpose of this study was to investigate the effect of 7% carbohydrate-electrolyte (CE) drink on sprint capacity immediately following 50 min of high-intensity cycling. After an overnight 12-hr fast, 8 trained male cyclists performed two 50-min simulated time trials on a Monark stationary cycle ergometer. Subjects consumed either the CE or a flavored water placebo (PL) at 10, 20, 30, and 40 min during the time trial. At the conclusion of each 50-min time trial, subjects immediately performed a Wingate Anaerobic Power Test. Peak power, mean power, and minimum power were significantly higher for the CE trials, whereas mean RPE was significantly lower. Mean heart rate and fatigue index were not different between trials. These results suggest that sprint performance following a high-intensity simulated time trial of only 50 min can be improved with periodic consumption of CE during the ride, particularly following an overnight fast, when liver glycogen is likely to be low. These findings have implications for competitive cycling, where sprint capacity at the conclusion of a race is an important determinant of success.