Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Paul S.R. Goods x
Clear All Modify Search
Restricted access

Paul S.R. Goods, Brian T. Dawson, Grant J. Landers, Christopher J. Gore and Peter Peeling

Purpose:

This study aimed to assess the impact of 3 heights of simulated altitude exposure on repeat-sprint performance in teamsport athletes.

Methods:

Ten trained male team-sport athletes completed 3 sets of repeated sprints (9 × 4 s) on a nonmotorized treadmill at sea level and at simulated altitudes of 2000, 3000, and 4000 m. Participants completed 4 trials in a random order over 4 wk, with mean power output (MPO), peak power output (PPO), blood lactate concentration (Bla), and oxygen saturation (SaO2) recorded after each set.

Results:

Each increase in simulated altitude corresponded with a significant decrease in SaO2. Total work across all sets was highest at sea level and correspondingly lower at each successive altitude (P < .05; sea level < 2000 m < 3000 m < 4000 m). In the first set, MPO was reduced only at 4000 m, but for subsequent sets, decreases in MPO were observed at all altitudes (P < .05; 2000 m < 3000 m < 4000 m). PPO was maintained in all sets except for set 3 at 4000 m (P < .05; vs sea level and 2000 m). BLa levels were highest at 4000 m and significantly greater (P < .05) than at sea level after all sets.

Conclusions:

These results suggest that “higher may not be better,” as a simulated altitude of 4000 m may potentially blunt absolute training quality. Therefore, it is recommended that a moderate simulated altitude (2000–3000 m) be employed when implementing intermittent hypoxic repeat-sprint training for team-sport athletes.

Open access

Peter Peeling, Martyn J. Binnie, Paul S.R. Goods, Marc Sim and Louise M. Burke

A strong foundation in physical conditioning and sport-specific experience, in addition to a bespoke and periodized training and nutrition program, are essential for athlete development. Once these underpinning factors are accounted for, and the athlete reaches a training maturity and competition level where marginal gains determine success, a role may exist for the use of evidence-based performance supplements. However, it is important that any decisions surrounding performance supplements are made in consideration of robust information that suggests the use of a product is safe, legal, and effective. The following review focuses on the current evidence-base for a number of common (and emerging) performance supplements used in sport. The supplements discussed here are separated into three categories based on the level of evidence supporting their use for enhancing sports performance: (1) established (caffeine, creatine, nitrate, beta-alanine, bicarbonate); (2) equivocal (citrate, phosphate, carnitine); and (3) developing. Within each section, the relevant performance type, the potential mechanisms of action, and the most common protocols used in the supplement dosing schedule are summarized.

Restricted access

Alannah K.A. McKay, Peter Peeling, Martyn J. Binnie, Paul S.R. Goods, Marc Sim, Rebecca Cross and Jason Siegler

Purpose: To assess the efficacy of a topical sodium bicarbonate (0.3 g/kg body weight NaHCO3) application (PR lotion; Amp Human) on blood buffering capacity and performance in recreationally active participants (study A) and moderately trained athletes (study B). Methods: In Study A, 10 participants completed 2 experimental trials: oral NaHCO3 (0.3 g/kg body weight + placebo lotion) or PR lotion (0.9036 g/kg body weight + oral placebo) applied 90 minutes prior to a cycling task to exhaustion (30-s sprints at 120% peak power output with 30-s rest). Capillary blood was collected and analyzed for pH, bicarbonate, and lactate every 10 minutes throughout the 90-minute loading period and postexercise at 5, 10, and 15 minutes. In Study B, 10 cyclists/triathletes completed 2 experimental trials, applying either PR or placebo lotion 30 minutes prior to a cycling performance task (3 × 30-s maximal sprints with 90-s recovery). Capillary blood samples were collected at baseline, preexercise, and postexercise and analyzed as per study A. Results: In Study A, pH and bicarbonate were significantly elevated from baseline after 10 minutes in the oral NaHCO3 condition and throughout recovery compared with no elevation in the PR lotion condition (P < .001). No differences in cycling time occurred between PR lotion (349 [119] s) and oral NaHCO3 (363 [80] s; P = .697). In Study B, no differences in blood parameters, mean power (P = .108), or peak power (P = .448) were observed between conditions. Conclusions: PR lotion was ineffective in altering blood buffering capacity or enhancing performance in either trained or untrained individuals.