Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Paulino Padial x
Clear All Modify Search
Restricted access

Amador García-Ramos, Slobodan Jaric, Paulino Padial and Belén Feriche

This study aimed to (1) evaluate the linearity of the force–velocity relationship, as well as the reliability of maximum force (F 0), maximum velocity (V 0), slope (a), and maximum power (P 0); (2) compare these parameters between the traditional and ballistic bench press (BP); and (3) determine the correlation of F 0 with the directly measured BP 1-repetition maximum (1RM). Thirty-two men randomly performed 2 sessions of traditional BP and 2 sessions of ballistic BP during 2 consecutive weeks. Both the maximum and mean values of force and velocity were recorded when loaded by 20–70% of 1RM. All force–velocity relationships were strongly linear (r > .99). While F 0 and P 0 were highly reliable (ICC: 0.91–0.96, CV: 3.8–5.1%), lower reliability was observed for V 0 and a (ICC: 0.49–0.81, CV: 6.6–11.8%). Trivial differences between exercises were found for F 0 (ES: < 0.2), however the a was higher for the traditional BP (ES: 0.68–0.94), and V 0 (ES: 1.04–1.48) and P 0 (ES: 0.65–0.72) for the ballistic BP. The F 0 strongly correlated with BP 1RM (r: 0.915–0.938). The force–velocity relationship is useful to assess the upper body maximal capabilities to generate force, velocity, and power.

Restricted access

Alejandro Pérez-Castilla, Belén Feriche, Slobodan Jaric, Paulino Padial and Amador García-Ramos

This study aimed to examine the validity of mechanical variables obtained by a linear velocity transducer from the unconstrained and constrained squat jump (SJ). Twenty-three men were tested on the unconstrained SJ and the SJ constrained by a Smith machine. Maximum values of force, velocity, and power were simultaneously recorded both by a linear velocity transducer attached to a bar of mass of 17, 30, 45, 60, and 75 kg and by a force plate. Linear velocity transducer generally overestimated the outcomes measured as compared to the force plate, particularly in unconstrained SJ. Bland-Altman plots revealed that heteroscedasticity of errors was mainly observed for velocity variables (r 2 = .26–.58) where the differences were negatively associated with the load magnitude. However, exceptionally high correlations were observed between the same outcomes recorded with the 2 methods in both unconstrained (median r = .89 [.71–.95]) and constrained SJ (r = .90 [.65–.95]). Although the systematic and proportional bias needs to be acknowledged, the high correlations between the variables obtained by 2 methods suggest that the linear velocity transducer could provide valid values of the force, velocity, and power outputs from both unconstrained and constrained SJ.

Restricted access

Amador García-Ramos, Alejandro Torrejón, Belén Feriche, Antonio J. Morales-Artacho, Alejandro Pérez-Castilla, Paulino Padial and Guy Gregory Haff

Purpose: To provide 2 general equations to estimate the maximum possible number of repetitions (XRM) from the mean velocity (MV) of the barbell and the MV associated with a given number of repetitions in reserve, as well as to determine the between-sessions reliability of the MV associated with each XRM. Methods: After determination of the bench-press 1-repetition maximum (1RM; 1.15 ± 0.21 kg/kg body mass), 21 men (age 23.0 ± 2.7 y, body mass 72.7 ± 8.3 kg, body height 1.77 ± 0.07 m) completed 4 sets of as many repetitions as possible against relative loads of 60%1RM, 70%1RM, 80%1RM, and 90%1RM over 2 separate sessions. The different loads were tested in a randomized order with 10 min of rest between them. All repetitions were performed at the maximum intended velocity. Results: Both the general equation to predict the XRM from the fastest MV of the set (CV = 15.8–18.5%) and the general equation to predict MV associated with a given number of repetitions in reserve (CV = 14.6–28.8%) failed to provide data with acceptable between-subjects variability. However, a strong relationship (median r 2 = .984) and acceptable reliability (CV < 10% and ICC > .85) were observed between the fastest MV of the set and the XRM when considering individual data. Conclusions: These results indicate that generalized group equations are not acceptable methods for estimating the XRM–MV relationship or the number of repetitions in reserve. When attempting to estimate the XRM–MV relationship, one must use individualized relationships to objectively estimate the exact number of repetitions that can be performed in a training set.