Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Paulo Sugihara Junior x
Clear All Modify Search
Restricted access

Hellen C.G. Nabuco, Crisieli M. Tomeleri, Rodrigo R. Fernandes, Paulo Sugihara Junior, Edilaine F. Cavalcante, Danielle Venturini, Décio S. Barbosa, Analiza M. Silva, Luís B. Sardinha and Edilson S. Cyrino

The objective of this study was to investigate the effects of protein intake beyond habitual intakes associated with resistance training on metabolic syndrome (MetS)-related parameters, isokinetic strength, and body composition in health older women. A total of 30 older women (68.8 ± 4.3 years) participated in this investigation and were assigned to receive 35 g of whey protein or placebo combined with resistance training, over 12-weeks, three times per week. Blood samples, blood pressure, dietary intake, strength, and body composition were assessed before and after the intervention period. Two-way analysis of variance for repeated measures was applied for comparisons. Both groups improved the skeletal muscle mass, muscular strength, waist circumference, triglycerides, high-density lipoprotein, glucose, resistance, reactance, and MetS Z-score risk. However, the improvements in skeletal muscle mass, waist circumference, and MetS Z-score risk were significantly greater in protein group when compared with control group. Moreover, protein group significantly decreased %body fat when compared with control group. Higher protein intake combined with resistance training promoted greater improvements in skeletal muscle mass, %body fat, waist circumference, and MetS Z-score risk in older women.

Restricted access

Alex S. Ribeiro, Fábio Luiz C. Pina, Soraya R. Dodero, Danilo R. P. Silva, Brad J. Schoenfeld, Paulo Sugihara Júnior, Rodrigo R. Fernandes, Décio S. Barbosa, Edilson S. Cyrino and Julio Tirapegui

The aim of this study was to analyze the effects of 8 weeks of conjugated linoleic acid (CLA) supplementation associated with aerobic exercise on body fat and lipid profile on obese women. We performed a randomized, double-blinded and placebo-controlled trial with 28 obese women who received 3.2 g/day of CLA or 4 g/day of olive oil (placebo group) while performing an 8-week protocol of aerobic exercise. Dietary intake (food record), body fat (dual-energy X-ray absorptiometry), and biochemical analysis (blood sample) were assessed before and after the intervention period. Independent of CLA supplementation, both groups improved (p < .05) oxygen uptake (CLA group, 13.2%; PLC group, 14.8%), trunk fat (CLA group, −1.0%; PLC group, −0.5%), leg fat (CLA group, −1.0%; PLC group, −1.6%), and total body fat (CLA group, −1.7%; PLC group, −1.3%) after the 8-week intervention. No main effect or Group × Time interaction was found for total cholesterol, triglycerides, and plasma lipoproteins (p > .05). We conclude that CLA supplementation associated with aerobic exercise has no effect on body fat reduction and lipid profile improvements over placebo in young adult obese women.

Restricted access

Paulo Sugihara Junior, Alex S. Ribeiro, Hellen C.G. Nabuco, Rodrigo R. Fernandes, Crisieli M. Tomeleri, Paolo M. Cunha, Danielle Venturini, Décio S. Barbosa, Brad J. Schoenfeld and Edilson S. Cyrino

The purpose of this study was to investigate the effect of whey protein (WP) supplementation on muscular strength, hypertrophy, and muscular quality in older women preconditioned to resistance training (RT). In a randomized, double-blind, and placebo (PLA)-controlled design, 31 older women (67.4 ± 4.0 years, 62.0 ± 6.9 kg, 155.9 ± 5.7 cm, and 25.5 ± 2.4 kg/m2) received either 35 g of WP (n = 15) or 35 g of PLA (n = 16) over a 12-week study period while performing an RT program three times a week. Dietary intake, one-repetition maximum test, and skeletal muscle mass by dual-energy X-ray absorptiometry were assessed before and after the intervention period. Both groups showed significant (p < .05) improvements in skeletal muscle mass and total strength, and the WP group realized greater increases (p < .05) in these measures compared with PLA (skeletal muscle mass: WP = +4.8% vs. PLA = +2.3%; strength: WP = +8.7% vs. PLA = +4.9%). Muscular quality increased (p < .05) in both groups (WP = +2.9% vs. PLA = +1.5%) without statistical differences (p > .05) noted between conditions. We conclude that WP supplementation in combination with RT induces higher increases in both strength and hypertrophy in older women preconditioned to RT.