Search Results

You are looking at 1 - 9 of 9 items for

  • Author: Peter Han x
Clear All Modify Search
Restricted access

Dennis-Peter Born, Billy Sperlich and Hans-Christer Holmberg

To assess original research addressing the effect of the application of compression clothing on sport performance and recovery after exercise, a computer-based literature research was performed in July 2011 using the electronic databases PubMed, MEDLINE, SPORTDiscus, and Web of Science. Studies examining the effect of compression clothing on endurance, strength and power, motor control, and physiological, psychological, and biomechanical parameters during or after exercise were included, and means and measures of variability of the outcome measures were recorded to estimate the effect size (Hedges g) and associated 95% confidence intervals for comparisons of experimental (compression) and control trials (noncompression). The characteristics of the compression clothing, participants, and study design were also extracted. The original research from peer-reviewed journals was examined using the Physiotherapy Evidence Database (PEDro) Scale. Results indicated small effect sizes for the application of compression clothing during exercise for shortduration sprints (10–60 m), vertical-jump height, extending time to exhaustion (such as running at VO2max or during incremental tests), and time-trial performance (3–60 min). When compression clothing was applied for recovery purposes after exercise, small to moderate effect sizes were observed in recovery of maximal strength and power, especially vertical-jump exercise; reductions in muscle swelling and perceived muscle pain; blood lactate removal; and increases in body temperature. These results suggest that the application of compression clothing may assist athletic performance and recovery in given situations with consideration of the effects magnitude and practical relevance.

Restricted access

Peter Han, Mark Dodds, Tara Mahoney, Kristi Schoepfer and Justin Lovich

Social media platforms, such as Facebook, Twitter, Instagram, YouTube, and Snapchat, have become extremely popular; they serve as tools to connect individuals in a public forum. However, collegiate student-athletes use social media to send messages that may reflect poorly on their educational institutions. For example, student-athletes have posted profanity, obscene messages, compromising photographs, and even threatened the President of the United States while using social media. These messages create negative publicity for the college since athletics and student-athletes are a visible aspect of the institution. As such, inappropriate social media use has become a major concern with college athletic departments. Because the NCAA requires member institutions to adequately and consistently monitor social networking activity, colleges have responded to the actions by disciplining student-athletes that use social media negatively to voice their opinions; in some cases, this punishment has been as severe as actually dismissing the student-athlete from his or her team. But, how does this action impact the public relations of the athletic department? Further, does it subject the college to possible legal action?

Restricted access

C. Roger Rees, Wolf-Deitrich Brettschneider and Hans Peter Brandl-Bredenbeck

While economic-oriented theories identify a “homogenized” or “Americanized,” unidirectional model of global sport, figurational theories conceptualize globalization as much more complicated, multifaceted, and interactional. However, the spread of “achievement” sport is seen as central in both approaches. This paper investigates the degree to which “achievement” criteria characterize the sporting behavior and sporting perceptions of adolescents in Berlin and suburban New York. We find evidence that adolescents from both samples accept competition and training as important components of their sport concepts, and examples of some of these components associated with gender differences transcending national boundaries. We also identify differences in the sport concepts of Berlin and suburban New York youth, both in the types of sports they play and in the meaning they attach to these activities. These differences lead us to question the ubiquity of “achievement” sport as a component of globalization, and hence, the efficacy of theories stressing “homogenization” and unidirectionality.

Restricted access

Peter Hastie, Hans van der Mars, Todd Layne and Danielle Wadsworth

This study examined the effectiveness of three conditions in which 48 fourth-grade students were prompted to be physically active out of school. Using an alternating treatments design (Cooper, Heron, & Heward, 2007) the three intervention conditions included: (a) Baseline: No prompting of students, (b) Teacher Prompts: Verbal prompt to “remember to do something active after school today”, and (c) Teacher Prompts and group-oriented contingencies: Verbal prompts with an index card where students could record their activity to earn bonus points as part of a team challenge. Graphically plotted pedometer data depicting data paths, variability, and trends within and across three conditions showed that students were more active outside of school only when the contingent reinforcement (c) was in place. This suggests that using prompts and group-oriented contingencies within Sport Education appears to be an effective and authentic context for promoting independent (i.e., free play) out-of-school time physical activity.

Restricted access

Billy Sperlich, Dennis-Peter Born, Christoph Zinner, Anna Hauser and Hans-Christer Holmberg

Purpose:

To evaluate whether upper-body compression affects power output and selected metabolic, cardiorespiratory, hemodynamic, and perceptual responses during three 3-min sessions of double-poling (DP) sprint.

Method:

Ten well-trained male athletes (25 ± 4 y, 180 ± 4 cm, 74.6 ± 3.2 kg) performed such sprints on a DP ski ergometer with and without a long-sleeved compression garment.

Result:

Mean power output was not affected by such compression (216 ± 25 W in both cases; P = 1.00, effect size [ES] = 0.00), although blood lactate concentration was lowered (P < .05, ES = 0.50–1.02). Blood gases (ES = 0.07–0.50), oxygen uptake (ES = 0.04–0.28), production of carbon dioxide (ES = 0.01–0.46), heart rate (ES = 0.00–0.21), stroke volume (ES = 0.33–0.81), and cardiac output (ES = 0.20–0.91) were also all unaffected by upper-body compression (best P = 1.00). This was also the case for changes in the tissue saturation index (ES = 0.45–1.17) and total blood content of hemoglobin (ES = 0.09–0.85), as well as ratings of perceived exertion (ES = 0.15–0.88; best P = .96).

Conclusion:

The authors conclude that the performance of well-trained athletes during 3 × 3-min DP sprints will not be enhanced by upper-body compression.

Restricted access

Dennis-Peter Born, Christoph Zinner, Britta Herlitz, Katharina Richter, Hans-Christer Holmberg and Billy Sperlich

Purpose:

The current investigation assessed tissue oxygenation and local blood volume in both vastus lateralis muscles during 3000-m race simulations in elite speed skaters on ice and the effects of leg compression on physiological, perceptual, and performance measures.

Methods:

Ten (6 female) elite ice speed skaters completed 2 on-ice trials with and without leg compression. Tissue oxygenation and local blood volume in both vastus lateralis muscles were assessed with near-infrared spectroscopy. Continuous measures of oxygen uptake, ventilation, heart rate, and velocity were conducted throughout the race simulations, as well as blood lactate concentration and ratings of perceived exertion before and after the trials. In addition, lap times were assessed.

Results:

The investigation of tissue oxygenation in both vastus lateralis muscles revealed an asymmetry (P < .00; effect size = 1.81) throughout the 3000-m race simulation. The application of leg compression did not affect oxygenation asymmetry (smallest P = .99; largest effect size = 0.31) or local blood volume (P = .33; 0.95). Lap times (P = .88; 0.43), velocity (P = .24; 0.84), oxygen uptake (P = .79; 0.10), ventilation (P = .11; 0.59), heart rate (P = .21; 0.89), blood lactate concentration (P = .82; 0.59), and ratings of perceived exertion (P = .19; 1.01) were also unaffected by the different types of clothing.

Conclusion:

Elite ice speed skaters show an asymmetry in tissue oxygenation of both vastus lateralis muscles during 3000-m events remaining during the long gliding phases along the straight sections of the track. Based on the data, the authors conclude that there are no performance-enhancing benefits from wearing leg compression under a normal racing suit.

Restricted access

Christopher McCrum, Katrin Eysel-Gosepath, Gaspar Epro, Kenneth Meijer, Hans H.C.M. Savelberg, Gert-Peter Brüggemann and Kiros Karamanidis

Posturography is used to assess balance in clinical settings, but its relationship to gait stability is unclear. We assessed if dynamic gait stability is associated with standing balance in 12 patients with unilateral vestibulopathy. Participants were unexpectedly tripped during treadmill walking and the change in the margin of stability (MoSchange) and base of support (BoSchange) relative to nonperturbed walking was calculated for the perturbed and first recovery steps. The center of pressure (COP) path during 30-s stance with eyes open and closed, and the distance between the most anterior point of the COP and the anterior BoS boundary during forward leaning (ADist), were assessed using a force plate. Pearson correlations were conducted between the static and dynamic variables. The perturbation caused a large decrease in the BoS, leading to a decrease in MoS. One of 12 correlations was significant (MoSchange at the perturbed step and ADist; r = −.595, P = .041; nonsignificant correlations: .068 ≤ P ≤ .995). The results suggest that different control mechanisms may be involved in stance and gait stability, as a consistent relationship was not found. Therefore, posturography may be of limited use in predicting stability in dynamic situations.

Open access

Ronald J. Maughan, Louise M. Burke, Jiri Dvorak, D. Enette Larson-Meyer, Peter Peeling, Stuart M. Phillips, Eric S. Rawson, Neil P. Walsh, Ina Garthe, Hans Geyer, Romain Meeusen, Luc van Loon, Susan M. Shirreffs, Lawrence L. Spriet, Mark Stuart, Alan Vernec, Kevin Currell, Vidya M. Ali, Richard G.M. Budgett, Arne Ljungqvist, Margo Mountjoy, Yannis Pitsiladis, Torbjørn Soligard, Uğur Erdener and Lars Engebretsen

Nutrition usually makes a small but potentially valuable contribution to successful performance in elite athletes, and dietary supplements can make a minor contribution to this nutrition program. Nonetheless, supplement use is widespread at all levels of sport. Products described as supplements target different issues, including the management of micronutrient deficiencies, supply of convenient forms of energy and macronutrients, and provision of direct benefits to performance or indirect benefits such as supporting intense training regimens. The appropriate use of some supplements can offer benefits to the athlete, but others may be harmful to the athlete’s health, performance, and/or livelihood and reputation if an anti-doping rule violation results. A complete nutritional assessment should be undertaken before decisions regarding supplement use are made. Supplements claiming to directly or indirectly enhance performance are typically the largest group of products marketed to athletes, but only a few (including caffeine, creatine, specific buffering agents and nitrate) have good evidence of benefits. However, responses are affected by the scenario of use and may vary widely between individuals because of factors that include genetics, the microbiome, and habitual diet. Supplements intended to enhance performance should be thoroughly trialed in training or simulated competition before implementation in competition. Inadvertent ingestion of substances prohibited under the anti-doping codes that govern elite sport is a known risk of taking some supplements. Protection of the athlete’s health and awareness of the potential for harm must be paramount, and expert professional opinion and assistance is strongly advised before embarking on supplement use.

Restricted access

Claire E. Francis, Patricia E. Longmuir, Charles Boyer, Lars Bo Andersen, Joel D. Barnes, Elena Boiarskaia, John Cairney, Avery D. Faigenbaum, Guy Faulkner, Beth P. Hands, John A. Hay, Ian Janssen, Peter T. Katzmarzyk, Han C. G. Kemper, Duane Knudson, Meghann Lloyd, Thomas L. McKenzie, Tim S. Olds, Jennifer M. Sacheck, Roy J. Shephard, Weimo Zhu and Mark S. Tremblay

Background:

The Canadian Assessment of Physical Literacy (CAPL) was conceptualized as a tool to monitor children’s physical literacy. The original model (fitness, activity behavior, knowledge, motor skill) required revision and relative weights for calculating/interpreting scores were required.

Methods:

Nineteen childhood physical activity/fitness experts completed a 3-round Delphi process. Round 1 was open-ended questions. Subsequent rounds rated statements using a 5-point Likert scale. Recommendations were sought regarding protocol inclusion, relative importance within composite scores and score interpretation.

Results:

Delphi participant consensus was achieved for 64% (47/73) of statement topics, including a revised conceptual model, specific assessment protocols, the importance of longitudinal tracking, and the relative importance of individual protocols and composite scores. Divergent opinions remained regarding the inclusion of sleep time, assessment/scoring of the obstacle course assessment of motor skill, and the need for an overall physical literacy classification.

Conclusions:

The revised CAPL model (overlapping domains of physical competence, motivation, and knowledge, encompassed by daily behavior) is appropriate for monitoring the physical literacy of children aged 8 to 12 years. Objectively measured domains (daily behavior, physical competence) have higher relative importance. The interpretation of CAPL results should be reevaluated as more data become available.