Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Peter Hofmann x
Clear All Modify Search
Restricted access

Georgine Gaisl and Peter Hofmann

Ethical and logistical limitations preclude the routine determination of anaerobic threshold in children by invasive measurement of blood lactate concentrations or ventilatory parameters. A noninvasive field test developed by Conconi can be used to determine anaerobic threshold through analysis of the heart rate curve during increased exercise workloads. Although this test was initially evaluated in adult athletes, recent data indicate that the Conconi test is applicable to children in both laboratory and field settings. Close correlation with lactate-derived anaerobic threshold appears to be possible when utilizing standard testing protocols.

Restricted access

Peter Hofmann and Rochus Pokan

The heart rate performance curve (HRPC) has been shown to be nonlinearly related to work load. This phenomenon has been used to determine a defection point and to be related to the lactate anaerobic threshold. The original method was heavily criticized, and the method was challenged by several authors. However, some authors also demonstrated a high value for this method’s application in various sports conditions. Unfortunately, the HRPC was shown to be not uniform and three different patterns were found. Basic investigations have shown a dependence of the HR-defection on beta1-receptor sensitivity, which gave a plausible explanation of the phenomenon. Important details regarding the testing protocol and the method of turn point determination are given in this review. As a conclusion, we may state that based on numerous studies the method is plausible and valid to determine aerobic exercise performance in various laboratory ergometer and specific sports-related field conditions. Standard protocol conditions adjusted to the exercise performance level of subjects and a computer-supported determination of turn points are necessary to obtain reliable results. Large-scale investigations to validate the heart rate turn point with maximal lactate steady state are still needed. However, from the available literature, the application of this noninvasive method can be recommended to determine aerobic exercise performance in various sports. This noninvasive test is easy to perform repeatedly, which gives interesting possibilities for the monitoring of training adaptation in the short term, such as altitude training or specifc taper forms.

Restricted access

Gerhard Tschakert and Peter Hofmann

High-intensity intermittent exercise (HIIE) has been applied in competitive sports for more than 100 years. In the last decades, interval studies revealed a multitude of beneficial effects in various subjects despite a large variety of exercise prescriptions. Therefore, one could assume that an accurate prescription of HIIE is not relevant. However, the manipulation of HIIE variables (peak workload and peak-workload duration, mean workload, intensity and duration of recovery, number of intervals) directly affects the acute physiological responses during exercise leading to specific medium- and long-term training adaptations. The diversity of intermittent-exercise regimens applied in different studies may suggest that the acute physiological mechanisms during HIIE forced by particular exercise prescriptions are not clear in detail or not taken into consideration. A standardized and consistent approach to the prescription and classification of HIIE is still missing. An optimal and individual setting of the HIIE variables requires the consideration of the physiological responses elicited by the HIIE regimen. In this regard, particularly the intensities and durations of the peak-workload phases are highly relevant since these variables are primarily responsible for the metabolic processes during HIIE in the working muscle (eg, lactate metabolism). In addition, the way of prescribing exercise intensity also markedly influences acute metabolic and cardiorespiratory responses. Turn-point or threshold models are suggested to be more appropriate and accurate to prescribe HIIE intensity than using percentages of maximal heart rate or maximal oxygen uptake.

Restricted access

Dietmar Wallner, Helmut Simi, Gerhard Tschakert and Peter Hofmann

Purpose:

To analyze the acute physiological response to aerobic short-interval training (AESIT) at various high-intensity running speeds. A minor anaerobic glycolytic energy supply was aimed to mimic the characteristics of slow continuous runs.

Methods:

Eight trained male runners (maximal oxygen uptake [VO2max] 55.5 ± 3.3 mL · kg−1 · min−1) performed an incremental treadmill exercise test (increments: 0.75 km · h−1 · min−1). Two lactate turn points (LTP1, LTP2) were determined. Subsequently, 3 randomly assigned AESIT sessions with high-intensity running-speed intervals were performed at speeds close to the speed (v) at VO2max (vVO2max) to create mean intensities of 50%, 55%, and 60% of vLTP1. AESIT sessions lasted 30 min and consisted of 10-s work phases, alternated by 20-s passive recovery phases.

Results:

To produce mean velocities of 50%, 55%, and 60% of vLTP1, running speeds were calculated as 18.6 ± 0.7 km/h (93.4% vVO2max), 20.2 ± 0.6 km/h (101.9% vVO2max), and 22.3 ± 0.7 km/h (111.0% vVO2max), which gave a mean blood lactate concentration (La) of 1.09 ± 0.31 mmol/L, 1.57 ± 0.52 mmol/L, and 2.09 ± 0.99 mmol/L, respectively. La at 50% of vLTP1 was not significantly different from La at vLTP1 (P = .8894). Mean VO2 was found at 54.0%, 58.5%, and 64.0% of VO2max, while at the end of the sessions VO2 rose to 71.1%, 80.4%, and 85.6% of VO2max, respectively.

Conclusion:

The results showed that AESIT with 10-s work phases alternating with 20 s of passive rest and a running speed close to vVO2max gave a systemic aerobic metabolic profile similar to slow continuous runs.

Restricted access

Manfred Lamprecht, Peter Hofmann, Joachim F. Greilberger and Guenther Schwaberger

Purpose:

To assess the effects of an encapsulated antioxidant concentrate (EAC) and exercise on lipid peroxidation (LIPOX) and the plasma antioxidant enzyme glutathione peroxidase (Pl-GPx).

Methods:

Eight trained male cyclists (VO2max > 55 ml · kg−1 · min−1) participated in this randomized, placebo-controlled, double-blinded, crossover study and undertook 4 cycle-ergometer bouts: 2 moderate exercise bouts over 90 min at 45% of individual VO2max and 2 strenuous exercise bouts at 75% of individual VO2max for 30 min. The first 2 exercise tests—1 moderate and 1 strenuous—were conducted after 4 weeks wash-out and after 12 and 14 days of EAC (107 IU vitamin E, 450 mg vitamin C, 36 mg β-carotene, 100 μg selenium) or placebo treatment. After another 4 weeks wash-out, participants were given the opposite capsule treatment and repeated the 2 exercise tests. Physical exercise training was equal across the whole study period, and nutrition was standardized by a menu plan the week before the tests. Blood was collected before exercise, immediately postexercise, and 30 min and 60 min after each test. Plasma samples were analyzed for LIPOX marker malondialdehyde (MDA) and the antioxidant enzyme pl-GPx.

Results:

MDA concentrations were significantly increased after EAC supplementation at rest before exercise and after moderate exercise (p < .05). MDA concentrations showed no differences between treatments after strenuous exercise (p > .1). Pl-GPx concentrations decreased at all time points of measurement after EAC treatment (p < .05).

Conclusions:

The EAC induced an increase of LIPOX as indicated by MDA and decreased pl-GPx concentrations pre- and postexercise.