Wearable activity monitors provide objective estimates of time in different physical activity intensities. Each continuous stepping period is described by its length and a corresponding single intensity (in metabolic equivalents of task [METs]), creating square wave–shaped signals. We argue that physiological responses do not resemble square waves, with the purpose of this technical report to challenge this idea and use experimental data as a proof of concept and direct potential solutions to better characterize activity intensity. Healthy adults (n = 43, 19♀; 23 ± 5 years) completed 6-min treadmill stages (five walking and five jogging/running) where oxygen consumption (3.5 ml O2·kg−1·min−1 = 1 MET) was recorded throughout and following the cessation of stepping. The time to steady state was ∼1–1.5 min, and time back to baseline following exercise was ∼1–2 min, with faster stepping stages generally exhibiting longer durations. Instead of square waves, the duration intensity signal reflected a trapezoid shape for each stage. The METs per minute during the rise to steady state (upstroke slopes; average: 1.7–6.3 METs/min for slow walking to running) may be used to better characterize activity intensity for shorter activity bouts where steady state is not achieved (within ∼90 s). While treating each activity bout as a single intensity is a much simpler analytical procedure, characterizing each bout in a continuous manner may better reflect the true physiological responses to movement. The information provided herein may be used to improve the characterization of activity intensity, definition of bout breaks, and act as a starting point for researchers and software developers interested in using wearables to measure activity intensity.
Search Results
You are looking at 1 - 3 of 3 items for
- Author: Peter J. Johansson x
- Refine by Access: All Content x
Moving Beyond the Characterization of Activity Intensity Bouts as Square Waves Signals
Myles W. O’Brien, Jennifer L. Petterson, Liam P. Pellerine, Madeline E. Shivgulam, Derek S. Kimmerly, Ryan J. Frayne, Pasan Hettiarachchi, and Peter J. Johansson
Assessing the Accuracy of Activity Classification Using Thigh-Worn Accelerometry: A Validation Study of ActiPASS in School-Aged Children
Claas Lendt, Pasan Hettiarachchi, Peter J. Johansson, Scott Duncan, Charlotte Lund Rasmussen, Anantha Narayanan, and Tom Stewart
Background: The ActiPASS software was developed from the open-source Acti4 activity classification algorithm for thigh-worn accelerometry. However, the original algorithm has not been validated in children or compared with a child-specific set of algorithm thresholds. This study aims to evaluate the accuracy of ActiPASS in classifying activity types in children using 2 published sets of Acti4 thresholds. Methods: Laboratory and free-living data from 2 previous studies were used. The laboratory condition included 41 school-aged children (11.0 [4.8] y; 46.5% male), and the free-living condition included 15 children (10.0 [2.6] y; 66.6% male). Participants wore a single accelerometer on the dominant thigh, and annotated video recordings were used as a reference. Postures and activity types were classified with ActiPASS using the original adult thresholds and a child-specific set of thresholds. Results: Using the original adult thresholds, the mean balanced accuracy (95% CI) for the laboratory condition ranged from 0.62 (0.56–0.67) for lying to 0.97 (0.94–0.99) for running. For the free-living condition, accuracy ranged from 0.61 (0.48–0.75) for lying to 0.96 (0.92–0.99) for cycling. Mean balanced accuracy for overall sedentary behavior (sitting and lying) was ≥0.97 (0.95–0.99) across all thresholds and conditions. No meaningful differences were found between the 2 sets of thresholds, except for superior balanced accuracy of the adult thresholds for walking under laboratory conditions. Conclusions: The results indicate that ActiPASS can accurately classify different basic types of physical activity and sedentary behavior in children using thigh-worn accelerometer data.