Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Peter O’Sullivan x
Clear All Modify Search
Restricted access

Leo Ng, Amity Campbell, Angus Burnett and Peter O’Sullivan

The trunk and pelvis kinematics of 20 healthy male and female adolescent rowers were recorded during an ergometer trial using an electromagnetic tracking system (Fastrak). The kinematics of each drive phase were collected during the 1st and 20th minute, respectively. The mean and range of the kinematics, stroke rate and stroke length were compared between genders and over time. Male rowers postured their pelvis with more posterior tilt and their thoracic spine in more flexion than female rowers (P < .05). Both genders postured their pelvis in more posterior pelvic rotation and upper trunk in more flexion over time. Male rowers were found to have a significantly shorter drive phase than female rowers (P = .001). Differences in trunk and pelvic kinematics between adolescent male and female rowers suggest potentially various mechanisms for biomechanical stress. Assessment and training of rowers should take gender differences into consideration.

Restricted access

Leo Ng, Amity Campbell, Angus Burnett, Anne Smith and Peter O’Sullivan

There is a high prevalence of low back pain (LBP) in adolescent male rowers. In this study, regional lumbar spinal kinematics and self-reported LBP intensity were compared between 10 adolescent rowers with moderate levels of LBP relating to rowing with 10 reporting no history of LBP during a 15-minute ergometer trial using an electromagnetic tracking system. Adolescent male rowers with LBP reported increasing pain intensity during ergometer rowing. No significant differences were detected in mean upper or lower lumbar angles between rowers with and without LBP. However, compared with rowers without pain, rowers with pain: (1) had relatively less excursion of the upper lumbar spine into extension over the drive phase, (2) had relatively less excursion of the lower lumbar spine into extension over time, (3) had greater variability in upper and lower lumbar angles over the 15-minute ergometer trial, (4) positioned their upper lumbar spine closer to end range flexion for a greater proportion of the drive phase, and (5) showed increased time in sustained flexion loading in the upper lumbar spine. Differences in regional lumbar kinematics exist between adolescent male rowers with and without LBP, which may have injury implication and intervention strategies.

Restricted access

Amity Campbell, Leon Straker, David Whiteside, Peter O’Sullivan, Bruce Elliott and Machar Reid

Adolescent tennis players are at risk for low back pain (LBP). Recent research has demonstrated a potential mechanical etiology during serves; however, groundstrokes have also been suggested to load this region. Therefore, this study compared lumbar mechanics between players with and without a history of LBP during open and square stance tennis forehands and backhands. Nineteen elite, adolescent, male tennis players participated, 7 with a history of recurrent disabling LBP and 12 without. Differences in three-dimensional lumbar kinetics and kinematics were compared between pain/no pain groups and groundstrokes using linear mixed models (P < .01). There were no significant differences between pain/no pain groups. Relative to a right-handed player, groundstroke comparisons revealed that forehands had greater racquet velocity, greater lumbar right lateral flexion force, as well as upper lumbar extension/rightward rotation and lower lumbar right rotation/lateral flexion movements that were closer to or further beyond end of range than backhands. Backhands required upper lumbar leftward rotation that was beyond end range, while forehands did not. Given that players typically rotated near to their end of range during the backswing of both forehands and backhands, independent of pain, groundstrokes may contribute to the cumulative strain linked to LBP in tennis players.

Restricted access

Melanie Wade, Amity Campbell, Anne Smith, Joanne Norcott and Peter O’Sullivan

The link between static and dynamic landing lumbar postures, when gymnasts are exposed to large ground reaction forces, has not been established. This investigation aimed to (a) determine if a relationship exists between sagittal static and dynamic landing lumbar spine angles at peak ground reaction force (GRF) and (b) quantify how close to end-range postures the gymnasts were at landing peak GRF. Twenty-one female gymnasts’ upper and lower lumbar spine angles were recorded: statically in sitting and standing, during landing of three gymnastic skills, and during active end-range lumbar flexion. Pearson’s correlations were used to investigate relationships between the angles in different postures. Significant correlations (r = .77–.89, p < .01) were found between all the static/dynamic postures in the lower lumbar spine angle, while fewer and less significant upper lumbar spine correlations were reported. Thirty percent of gymnasts landed a backsault with their lower lumbar spine flexed beyond their active end-range while experiencing GRF 6.8–13.3 times their body weight. These results inform low back pain prevention and management strategies in this population and highlight areas for future research.