Search Results

You are looking at 1 - 7 of 7 items for

  • Author: Peter W. Grandjean x
Clear All Modify Search
Restricted access

Peter W. Grandjean, Burritt W. Hess, Nicholas Schwedock, Jackson O. Griggs and Paul M. Gordon

Kinesiology programs are well positioned to create and develop partnerships within the university, with local health care providers, and with the community to integrate and enhance the activities of professional training, community service, public health outreach, and collaborative research. Partnerships with medical and health care organizations may be structured to fulfill accreditation standards and the objectives of the “Exercise is Medicine®” initiative to improve public health through primary prevention. Barriers of scale, location, time, human resources, and funding can be overcome so all stakeholder benefits are much greater than the costs.

Restricted access

Eric P. Plaisance, J. Kyle Taylor, Sofiya Alhassan, Asheber Abebe, Michael L. Mestek and Peter W. Grandjean

Inflammatory markers such as C-reactive protein (CRP), fibrinogen, and white-blood-cell (WBC) count are strongly associated with cardiovascular disease. The authors’ purpose was to compare the inflammatory response to a single aerobic-exercise session between individuals of high and moderate fitness. Ten apparently healthy highly ft and 11 moderately ft men expended 500 kcal at 70% of VO2peak. Fasting blood samples were obtained on 2 consecutive days before and again at 24, 72, and 120 h post exercise. Blood samples were analyzed for CRP, fibrinogen, and WBC count. CRP was 76% lower at baseline in the highly ft group than in the moderately ft group (P = 0.03). CRP, fibrinogen, and WBC count remained unaltered, however, in the days after exercise (P > 0.05 for all). These findings suggest that markers of inflammation are stable in the days after a single session of moderate-intensity aerobic exercise in apparently healthy men of at least average fitness.

Restricted access

Kevin J. Cole, Peter W. Grandjean, Richard J. Sobszak and Joel B. Mitchell

This study examined the effects of serial feedings of different carbohydrate (CHO) solutions on plasma volume, gastric emptying (GE), and performance during prolonged cycling exercise. Solutions containing 6 g% glucose-sucrose (CHO-6GS), 83 g% high fructose com syrup (CHO-8HF), 6.3 g% high fructose corn syrup + 2 g% glucose polymer (CHO-8HP), and a water placebo (WP) were compared. Ten trained male cyclists performed four cycling trials consisting of 105 min at 70% VQ2max followed by a 15-min all-out, self-paced performance ride. Every 15 min the men consumed one of the four test solutions. Blood samples were taken before, during, and after exercise to determine blood glucose and plasma volume changes. There were no significant differences in performance, GE, or plasma volume changes between trials. Blood glucose was significantly elevated at the 105-min timepoint in all CHO trials when compared to WP. The CHO-8HF and CHO-8HP drinks resulted in a significantly higher delivery of CHO to the intestine. Higher rates of CHO oxidation during the steady-state ride were observed only with the CHO-6GS drink.

Restricted access

John S. Green, Peter W. Grandjean, Shelly Weise, Stephen F. Crouse and J. James Rohack

Although endurance exercise and supplemental estrogen have both been shown to improve serum lipid cardiac risk profiles in postmenopausal women, data regarding a possible synergistic influence are scarce and inconsistent. The purpose of this study was to determine whether such a synergistic influence could be demonstrated. Serum concentrations of total cholesterol (TC), HDL-cholesterol (HDL-C), HDL2-C, HDL3-C, LDL-C, and triglycerides (TG) were obtained from postmenopausal women (N = 45) in each of 4 groups: currently exercising and taking estrogen replacement, exercising and not taking estrogen, sedentary and taking estrogen, and sedentary and not taking estrogen. HDL-C was on average 21% higher (p < .05) and the HDL-C:LDL-C ratio on average 45% higher (p < .05) in the exercise-plus-estrogen group than in any of the other 3 groups. It was concluded that the combination of endurance exercise and estrogen replacement might be associated with better lipid coronary risk profiles in postmenopausal women than either intervention alone.

Restricted access

Michael L. Mestek, John C. Garner, Eric P. Plaisance, James Kyle Taylor, Sofiya Alhassan and Peter W. Grandjean

The purpose of this study was to compare blood lipid responses to continuous versus accumulated exercise. Nine participants completed the following conditions on separate occasions by treadmill walking/jogging at 70% of VO2max : 1) one 500-kcal session and 2) three 167 kcal sessions. Total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) concentrations were measured from serum samples obtained 24 h prior to and 24 and 48 h after exercise. All blood lipid responses were analyzed in 2 (condition) × 3 (time) repeated measures ANOVAs. HDL-C increased by 7 mg/dL over baseline at 48 h post-exercise with three accumulated sessions versus 2 mg/dL with continuous exercise (P < 0.05). Triglyceride concentrations were unchanged in both conditions. These findings suggest that three smaller bouts accumulated on the same day may have a modestly greater effect for achieving transient increases in HDL-C compared to a continuous bout of similar caloric expenditure.

Restricted access

Roger G. Bounds, Steven E. Martin, Peter W. Grandjean, Barbara C. O’Brien, Cindi Inman and Stephen F. Crouse

To test the effect of diet on the short-term lipid response to exercise, fourteen moderately trained (VO2max: 50.2 ± 6.7 ml/kg/min), healthy men (mean age: 28 ± 4 years) were alternately fed a high fat (60±6.7% fat) and a high carbohydrate (63 ± 3.2% carbohydrate) isoenergetic diet for 2 weeks in a randomized crossover design. During the last 4 days of the treatments, fasting total cholesterol, triglyceride. HDL-cholesterol, and HDL3-cholesterol were measured the day before, and again immediately, 24 hr. and 48 hr after exercise (4190 kJ, 70% VO2max). LDL-cholesterol and HDL2-cholesterol were calculated. Lipid concentrations were adjusted for plasma volume changes after exercise. A 2 (diet) × 4 (time) ANOVA with repeated measures revealed no significant interaction between the diet and exercise treatments. Furthermore, diet alone did not influence lipid concentrations in these trained men. Exercise resulted in an increase in HDL-C (10.7%) and HDL3-C (8.5%) concentrations and a concomitant fall in triglyceride (-25%) and total cholesterol (-3.5%). Thus, we conclude that diet composition does not affect the short-term changes in blood lipids and lipoproteins that accompany a single session of aerobic exercise in moderately trained men.

Restricted access

José Moncada-Jiménez, Eric P. Plaisance, Michael L. Mestek, Lance Ratcliff, Felipe Araya-Ramírez, James K. Taylor, Peter W. Grandjean and Luis F. AragónVargas

Purpose:

This study investigated the effects of short-term dietary changes on metabolism and duathlon performance.

Methods:

Eleven men underwent a high-fat (HF; >65% fat from energy) or a high-carbohydrate (CHO; HC) diet (>60% CHO from energy). Energy intake was individualized, and commercially available foods were prepared and packaged for each participant 48 hr before they completed a laboratory-based duathlon (5-km run, 30 km cycling, and 10-km run). Blood samples were obtained before, immediately after, and 1 and 2 hr after the duathlon for determination of glucose, insulin, and glucagon. Oxygen consumption, ratings of perceived exertion (RPE), and respiratory-exchange ratio were assessed, and fat and CHO oxidation were estimated before, during, and after the duathlon.

Results:

Dietary records indicated a significant difference in fat content ingested before the duathlons (p < .05). Time to complete the duathlon did not differ between the HC- and the HF-diet trials. CHO-oxidation rate was higher during the HC-diet trial than during the HF-diet trial (p = .006). Fat-oxidation rates were higher in the HF-diet trial than in the HC-diet trial (p = .001). No differences in RPE were found between dietary trials. Blood glucose concentration was higher immediately after the duathlon in the HC-diet trial than in the HF-diet trial and remained higher 1 and 2 hr after the duathlon (p < .05).

Conclusion:

Duathlon performance was not altered by short-term changes in dietary fat or CHO composition despite higher blood glucose concentrations under the HC condition.