Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Philip W. Fink x
Clear All Modify Search
Restricted access

Philip W. Fink, Sarah P. Shultz, Eva D’Hondt, Matthieu Lenoir and Andrew P. Hills

Multifractal analyses have been used in recent years as a way of studying balance, with the goal of understanding the patterns of movement of the center of pressure at different spatial scales. A multifractal detrended fluctuation analysis was used to compare obese and nonobese children to investigate the cause of previously demonstrated deficiencies in balance for obese children. Twenty-two children (11 obese and 11 nonobese), aged 8–15 years, performed 30-s trials of bilateral static balance on a plantar pressure distribution measuring device. Both the obese and nonobese groups demonstrated greater persistence for small fluctuations, but the effect was greater in the obese group. This was particularly evident with the eyes closed, where significant differences between the obese and nonobese were observed for small fluctuations. These results demonstrate that balance deficiencies in obese children may be the result of decreased proprioceptive abilities in obese children.

Restricted access

Mostafa Yaghoubi, Philip W. Fink, Wyatt H. Page and Sarah P. Shultz

Purpose: This study examined differences in lower extremity kinematics and muscle activation patterns between normal weight (NW) and overweight (OW) children during stationary exercises (running in place, frontal kick, and butt kick) at submaximal intensity. Methods: Healthy children (aged 10–13 y) were stratified into OW (n = 10; body fat percentage: 34.97 [8.60]) and NW (n = 15; body fat percentage: 18.33 [4.87]). Electromyography was recorded for rectus femoris, vastus lateralis, biceps femoris, gastrocnemius, and tibialis anterior. In addition, the ratings of perceived exertion and range of motion of hip, knee, and ankle joints were collected during stationary exercises. Repeated-measures analysis of variance compared muscle activation, range of motion, and ratings of perceived exertion between groups and exercises. Friedman test examined sequencing of muscles recruitment. Results: Compared with NW, OW experienced significantly greater ratings of perceived exertion (13.7 [0.8] vs 11.7 [0.7]; P < .001) and electromyography amplitude in all muscles apart from vastus lateralis during stationary exercises. In addition, NW children used more consistent muscles’ recruitment pattern in comparison with OW children. The range of motion was similar between groups at all joints. Conclusion: OW children may adopt a more active neuromuscular strategy to provide greater stability and propulsion during stationary exercises. Stationary exercise can be prescribed to strengthen lower extremity muscles in OW children, but mode and intensity must be considered.

Restricted access

Mostafa Yaghoubi, Philip W. Fink, Wyatt H. Page, Ali Heydari and Sarah P. Shultz

Purpose: This study examined lower extremity kinematics in healthy weight (HW) and overweight (OW) children during water- and land-based stationary exercises (stationary running, frontal kick, and butt kick) at light submaximal intensity. Methods: Participants included OW (N = 10; body fat percentage: 34.97 [8.60]) and HW (N = 15; body fat percentage: 18.33 [4.87]) children, aged 10 to 13 years. Spatiotemporal data, lower extremity joint kinematics, and rating of perceived exertion (RPE) were collected during water- and land-based stationary exercises. Repeated measures analysis of variance compared kinematic variables and RPE between groups and environments. A polygon area function compared coordination patterns between environments. Results: RPE responses were significantly greater in OW than HW children on land (13.6 [0.7] vs 11.6 [0.7]; P < .001), whereas the RPE responses were similar between groups in water (11.2 [0.7] vs 11.1 [0.8]; P > .05). OW children were significantly more upright than HW children during land-based exercise, whereas there were no differences observed between groups during aquatic-based exercise. The duration of stance and swing phases, angular velocity, and cadence were significantly lower in water than on land. Conclusion: Compared with HW children, OW children performed stationary exercises in a more upright posture on land, with higher RPE. However, these differences diminished in water. Aquatic-based exercise may be effective in minimizing the effects of excess mass on OW children’s ability to complete physical activity.

Restricted access

Stacey M. Kung, Philip W. Fink, Stephen J. Legg, Ajmol Ali and Sarah P. Shultz

Purpose: To investigate whether youth and adults can perceive differences in exertion between walking and running at speeds near the preferred transition speed (PTS) and if there are age-related differences in these perceptions. Methods: A total of 49 youth (10–12 y, n = 21; 13–14 y, n = 10; 15–17 y, n = 18) and 13 adults (19–29 y) completed a walk-to-run transition protocol to determine PTS and peak oxygen uptake. The participants walked and ran on a treadmill at 5 speeds (PTS–0.28 m·s−1, PTS–0.14 m·s−1, PTS, PTS+0.14 m·s−1, PTS+0.28 m·s−1) and rated perceived exertion using the OMNI Perceived Exertion (OMNI-RPE) scale. Oxygen consumption was measured during the walk-to-run transition protocol to obtain the relative intensity (percentage of peak oxygen uptake) at PTS. OMNI-RPE scores at all speeds and percentage of peak oxygen uptake at PTS were compared between age groups. Results: The 10- to 12-year-olds transitioned at a higher percentage of peak oxygen uptake than adults (64.54 [10.18] vs 52.22 [11.40], respectively; P = .035). The 10- to 14-year-olds generally reported higher OMNI-RPE scores than the 15- to 17-year-olds and adults (P < .050). In addition, the 10- to 14-year-olds failed to distinguish differences in OMNI-RPE between walking and running at PTS and PTS+0.14 m·s−1. Conclusions: Children aged 10–14 years are less able to distinguish whether walking or running requires less effort at speeds near the PTS compared with adults. The inability to judge which gait mode is less demanding could hinder the ability to minimize locomotive demands.