Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Philippe Gimenez x
Clear All Modify Search
Restricted access

Theo Ouvrard, Alain Groslambert, Gilles Ravier, Sidney Grosprêtre, Philippe Gimenez and Frederic Grappe

Purpose: To identify the impact of a leading teammate in front of a cyclist on psychological, physiological, biomechanical, and performance parameters during an uphill maximal effort. Methods: After familiarization, 12 well-trained competitive cyclists completed 2 uphill time trials (UTTs, 2.7 km at 7.4%) in randomized order; that is, 1 performed alone (control condition) and 1 followed a simulated teammate during the entire UTT (leader condition). Performance (UTT time) and mean power output (PO) were recorded for each UTT. For physiological parameters, mean heart rate and postexercise blood lactate concentration were recorded. Psychological parameters (rating of perceived exertion, pleasure, and attentional focus) were collected at the end of each trial. Results: Performance (UTT time) significantly improved by 4.2% (3.1%) in the leader condition, mainly due to drafting decrease of the aerodynamic drag (58% of total performance gains) and higher end spurt (+9.1% [9.1%] of mean PO in the last 10% of the UTT). However, heart rate and postexercise blood lactate concentration were not significantly different between conditions. From a psychological aspect, higher pleasure was observed in the leader condition (+41.1% [51.7%]), but attentional focus was not significantly different. Conclusions: The presence of a leading teammate during uphill cycling had a strong impact on performance, enabling higher speed for the same mean PO and greater end spurt. These results explain why the best teams competing for the general classification of the most prestigious and contested races like the Grand Tours tend to always protect their leader with teammates during decisive ascents.

Restricted access

Thibault Lussiana, Cyrille Gindre, Kim Hébert-Losier, Yoshimasa Sagawa, Philippe Gimenez and Laurent Mourot

Purpose:

No unique or ideal running pattern is the most economical for all runners. Classifying the global running patterns of individuals into 2 categories (aerial and terrestrial) using the Volodalen method could permit a better understanding of the relationship between running economy (RE) and biomechanics. The main purpose was to compare the RE of aerial and terrestrial runners.

Methods:

Two coaches classified 58 runners into aerial (n = 29) or terrestrial (n = 29) running patterns on the basis of visual observations. RE, muscle activity, kinematics, and spatiotemporal parameters of both groups were measured during a 5-min run at 12 km/h on a treadmill. Maximal oxygen uptake (V̇O2max) and peak treadmill speed (PTS) were assessed during an incremental running test.

Results:

No differences were observed between aerial and terrestrial patterns for RE, V̇O2max, and PTS. However, at 12 km/h, aerial runners exhibited earlier gastrocnemius lateralis activation in preparation for contact, less dorsiflexion at ground contact, higher coactivation indexes, and greater leg stiffness during stance phase than terrestrial runners. Terrestrial runners had more pronounced semitendinosus activation at the start and end of the running cycle, shorter flight time, greater leg compression, and a more rear-foot strike.

Conclusions:

Different running patterns were associated with similar RE. Aerial runners appear to rely more on elastic energy utilization with a rapid eccentric-concentric coupling time, whereas terrestrial runners appear to propel the body more forward rather than upward to limit work against gravity. Excluding runners with a mixed running pattern from analyses did not affect study interpretation.