Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Philippe Gorce x
Clear All Modify Search
Restricted access

Julien Jacquier-Bret, Nasser Rezzoug and Philippe Gorce

In the presence of motor redundancy, recent studies have shown that goal equivalent configurations of the body segments might be used by the central nervous system (CNS) instead of stereotypical movement patterns. In particular, some authors have shown that the CNS might choose a subset of joint configurations (termed the uncontrolled manifold or UCM) such that variability (goal equivalent variance or GEV) in this subset does not affect the value of a particular performance variable while variability in the orthogonal subset ORT (non-goal equivalent variance or NGEV) does. This hypothesis has been used successfully to test whether specific performance variables such as endpoint trajectory or segment global orientation are stabilized by the CNS or to study the influence of constraints on the organization of the movement. Few studies have examined the redundancy problem when considering obstacle avoidance during a grasping task. Indeed, the majority of the works on this topic considers non redundant arm models or do not take into account the movement variability. In the present work, we sought to study the coordination of the trunk and the arm during a reaching task involving an obstacle and to test whether such a spatial constraint in extrinsic space may induce particular adaptations in term of joint flexibility when considering the shoulder, elbow, and wrist joint center positions. In this framework, the upper limb three-dimensional kinematics was recorded. From the calculated joint angles, the variability in joint space related to the three joint center positions was computed and decomposed into GEV and NGEV. In agreement with the UCM hypothesis, results showed higher values of GEV than NGEV for all the experimental conditions. The main finding of the study is that joints’ synergy is strengthened for the stabilization of the elbow joint center position during the late phases of the movement. This strengthening seems to be due mainly to an increase of GEV. Therefore, our results suggest that an increase of joint flexibility may be a mechanism by which the CNS takes into account a spatial constraint in extrinsic space represented by an obstacle.

Restricted access

Arnaud Faupin, Philippe Gorce, Eric Watelain, Christophe Meyer and Andre Thevenon

The aim of this study was to investigate muscle activity, kinematic, and handgrip-force pattern generation during handcycling. One able-bodied participant performed a 1-min exercise test on a handcycle at 70 revolutions per minute. This article proposes an original data collection and analysis methodology that gathers synchronized kinematics, kinetics, and electromyography. Such data, which most often appear complex, are easily summarized using this methodology. This preliminary study has an new setup and offers good indications on the biomechanical pattern for handcycling movement analysis.

Restricted access

Julien Jacquier-Bret, Arnaud Faupin, Nasser Rezzoug and Philippe Gorce

The aim of this study was to propose a new index called Postural Force Production Index (PFPI) for evaluating the force production during handcycling. For a given posture, it assesses the force generation capacity in all Cartesian directions by linking the joint configuration to the effective force applied on the handgrips. Its purpose is to give insight into the force pattern of handcycling users, and could be used as ergonomic index. The PFPI is based on the force ellipsoid, which belongs to the class of manipulability indices and represents the overall force production capabilities at the hand in all Cartesian directions from unit joint torques. The kinematics and kinetics of the arm were recorded during a 1-min exercise test on a handcycle at 70 revolutions per minute performed by one paraplegic expert in handcycling. The PFPI values were compared with the Fraction Effective Force (FEF), which is classically associated with the effectiveness of force application. The results showed a correspondence in the propulsion cycle between FEF peaks and the most favorable postures to produce a force tangential to the crank rotation (PFPI). This preliminary study opens a promising way to study patterns of force production in the framework of handcycling movement analysis.

Restricted access

Clint Hansen, Nasser Rezzoug, Philippe Gorce and Brice Isableu

For the dominant limb, a velocity-dependent change in rotational axes during the kinesthetic control of unconstrained 3D arm rotations was reported, and thus the question arises if this can be reproduced for the nondominant arm. The rotation axes considered are the axes of minimum inertia (e3), the shoulder–center of mass axis (SH-CM), and the shoulder–elbow axis (SH-EL). The objective of this study was to examine whether the minimum inertia axis would constrain internal–external rotations of the shoulder at fast velocity. Participants performed cyclic rotations of their arms in 2 sensory conditions and at 2 velocities. The elbow configurations were either set to 90° or 140° to yield a constant separation between e3, SH-CM, and SH-EL. Our results showed that the limb’s rotational axis coincide with the SH-EL axis across velocity conditions, although higher variability was seen at higher velocity. This was true for both the dominant and the nondominant arm. Together, the results showed that cognitive instruction prevented a velocity-dependent rotation axis change toward e3 and/or SH-CM, as proposed in the minimum inertia principle.