Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Philippe Hellard x
Clear All Modify Search
Restricted access

Marc Elipot, Gilles Dietrich, Philippe Hellard and Nicolas Houel

The purpose of the present work was to study swimmers’ efficiency during the underwater phase of the grab start. Eight high-level swimmers participated in this study. They performed two types of start: a regular grab start (with underwater leg propulsion after the glide) and a grab start with no underwater movement (swimmers had to remain in a streamlined position). Four cameras filmed the entire underwater phase of all starts. Nine anatomic landmarks were identified on the swimmers’ bodies and their positions were calculated using a modified double plan DLT technique. From these positions and Dempster’s anthropometric data, the center of mass position and velocity were also determined. Kinetic energies were also calculated. This velocity and kinetic energies for the two types of start were compared. Swimmers began underwater leg propulsion 1.69 m too soon. The global and internal energies were significantly higher for the start with underwater leg propulsion. Nevertheless, swimmers’ velocities were equivalent for both starts. These results suggest that the swimmers did not use the underwater phase of the start efficiently: By kicking too soon, they did not succeed in producing higher velocities and thus wasted energy.

Restricted access

Nicolas Houel, Marc Elipot, Frédéric André and Philippe Hellard

The underwater phase of starts represents an important part of the performance in sprint swimming’s events. Kinematics variables that swimmers have to take into account to improve their underwater phase of starts are unknown. The aim of this study was to determine the kinematics variables that improve performance during the underwater phase of grab starts. A three-dimensional analysis of the underwater phase of ten swimmers of national level was conducted. Stepwise multiple linear regressions identified the main kinematics variables that influence the horizontal velocity of the swimmer each 0.5 m in the range of 5 to 7.5 m. The results show that the kinematics parameters change during the range of 5 to 7.5 m of the underwater phase of the starts. For this population of swimmers, the results enable proposals of four principles to improve the underwater phase: i) to be streamlined at the beginning of the underwater gliding phase, ii) to start the dolphin kicking after 6 m, iii) to generate propulsive forces using only feet and legs during underwater undulatory swimming, iv) to improve the frequency of underwater undulatory swimming.

Restricted access

David Simbaña Escobar, Philippe Hellard, David B. Pyne and Ludovic Seifert

To study the variability in stroking parameters between and within laps and individuals during competitions, we compared and modeled the changes of speed, stroke rate, and stroke length in 32 top-level male and female swimmers over 4 laps (L1–L4) in 200-m freestyle events using video-derived 2-dimensional direct linear transformation. For the whole group, speed was greater in L1, with significant decreases across L2, L3, and L4 (1.80 ± 0.10 vs 1.73 ± 0.08; 1.69 ± 0.09; 1.66 ± 0.09  · s−1, P < .05). This variability was attributed to a decrease in stroke length (L2: 2.43 ± 0.19 vs L4: 2.20 ± 0.13 m, P < .05) and an increase in stroke rate (L2: 42.8 ± 2.6 vs L4: 45.4 ± 2.3 stroke · min−1, P < .05). The coefficient of variation and the biological coefficient of variation in speed were greater for male versus female (3.9 ± 0.7 vs 3.1 ± 0.7; 2.9 ± 1.0 vs 2.6 ± 0.7, P < .05) and higher in L1 versus L2 (3.9 ± 1.3 vs 3.1 ± 0.1; 2.9 ± 0.9 vs 2.3 ± 0.7, P < .05). Intra-lap speed values were best represented by a cubic (n = 38), then linear (n = 37) and quadratic model (n = 8). The cubic fit was more frequent for males (43.8%) than females (15.6%), suggesting greater capacity to generate higher acceleration after the turn. The various stroking parameters managements within lap suggest that each swimmer adapts his/her behavior to the race constraints.

Restricted access

Olivier Hue, Roland Monjo, Marc Lazzaro, Michelle Baillot, Philippe Hellard, Laurent Marlin and A. Jean-Etienne

The authors tested the effect of cold water ingestion during high-intensity training in the morning vs the evening on both core temperature (TC) and thermal perceptions of internationally ranked long-distance swimmers during a training period in a tropical climate. Nine internationally ranked long-distance swimmers (5 men and 4 women) performed 4 randomized training sessions (2 in the evening and 2 in the morning) with 2 randomized beverages with different temperatures for 3 consecutive days. After a standardized warm-up of 1000 m, the subjects performed a standardized training session that consisted of 10 × 100 m (start every 1′20″) at a fixed velocity. The swimmers were then followed for the next 3000 m of the training schedule. Heart rate (HR) was continuously monitored during the 10 × 100 m, whereas TC, thermal comfort, and thermal sensation (TS) were measured before and after each 1000-m session. Before and after each 1000 m, the swimmers were asked to drink 190 mL of neutral (26.5 ± 2.5°C) or cold (1.3 ± 0.3°C) water packaged in standardized bottles. Results demonstrated that cold water ingestion induced a significant effect on TC, with a pronounced decrease in the evening, resulting in significantly lower mean TC and lower mean delta TC in evening cold (EC) than in evening neutral (EN), concomitant with significantly lower TS in EC than in EN and a significant effect on exercise HR. Moreover, although TC increased significantly with time in MN, MC, and EN, TC was stabilized during exercise in EC. To conclude, we demonstrate that a cold beverage had a significant effect on TC, TS, and HR during training in high-level swimmers in a tropical climate, especially during evening training.

Restricted access

Philippe Hellard, Robin Pla, Ferran A. Rodríguez, David Simbana and David B. Pyne

Purpose: To compare the dynamics of maximal oxygen uptake (V˙O2), blood lactate ([La]b), total energy expenditure (E tot), and contributions of the aerobic (E aer), alactic anaerobic (E an,al), and lactic anaerobic (E an,lac) metabolic energy pathways over 4 consecutive 25-m laps (L0–25, L25–50, etc) of a 100-m maximal freestyle swim. Methods: Elite swimmers comprising 26 juniors (age = 16 [1] y) and 23 seniors (age = 24 [5] y) performed 100 m at maximal speed and then 3 trials (25, 50, and 75 m) at the same pace as that of the 100 m. [La]b was collected, and V˙O2 was measured 20 s postexercise. Results: The estimated energetic contributions for the 100-m trial are presented as mean (SD): E aer, 51% (8%); E an,al, 18% (2%); E an,lac, 31% (9%). V˙O2 increased from L0–25 to L25–50 (mean = 3.5 L·min−1; 90% confidence interval [CI], 3.4–3.7 L·min−1 to mean = 4.2 L·min−1; 90% CI, 4.0–4.3 L·min−1) and then stabilized in the 2nd 50 m (mean = 4.1 L·min−1; 90% CI, 3.9–4.3 L·min−1 to mean = 4.2 L·min−1; 90% CI, 4.0–4.4 L·min−1). E tot (juniors, 138 [18] kJ; seniors, 168 [26] kJ), E an,al (juniors, 27 [3] kJ; seniors, 30 [3] kJ), and E an,lac (juniors, 38 [12] kJ; seniors, 62 [24] kJ) were 11–58% higher in seniors. Faster swimmers (n = 26) had higher V˙O2(4.6L·min1, 90% CI 4.4–4.8 L·min−1 vs 3.9 L·min−1, 90% CI 3.6–4.2 L·min−1), and E aer power was associated with fast performances (P < .001). Conclusion: Faster swimmers were characterized by higher V˙O2 and less time to reach the highest V˙O2 at ∼50 m of the 100-m swim. Anaerobic qualities become more important with age.