Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Philippe Richard x
Clear All Modify Search
Restricted access

Philippe Richard and François Billaut

Purpose: Speed skating leads to blood-flow restriction and deoxygenation in the lower limbs (especially the right leg) that may affect performance. Although the acute influence of such deoxygenation is not clearly understood, the authors tested whether remote ischemic preconditioning (RIPC) could modify muscular oxygenation and improve time-trial performance in that sport. Methods: Using a randomized, single-blind, placebo-controlled, crossover design, 9 elite speed skaters performed 1000-m on-ice time trials preceded by either RIPC of the upper limbs (3 × 5-min compression/5-min reperfusion cycles at 30 mm Hg >arterial systolic pressure) or placebo treatment (SHAM; 10 mm Hg). Changes in tissue saturation index, oxyhemoglobin–oxymyoglobin, deoxyhemoglobin–deoxymyoglobin, and total hemoglobin–myoglobin in the right vastus lateralis muscle were monitored using near-infrared spectroscopy (NIRS). Differences between RIPC and SHAM were analyzed using Cohen effect size (ES) ± 90% confidence limits and magnitude-based inferences. Results: Compared with SHAM, RIPC had a negligible effect on performance and NIRS variables. However, in a subgroup of sprinters (n = 5), RIPC likely lowered tissue saturation index at the beginning of the time trial (−6.1%; ES = −0.65) and likely increased deoxyhemoglobin–deoxymyoglobin at the beginning (3%; ES = 0.39), middle (2.9%; ES = 0.37), and end of the trial (−2.1%; ES = 0.27). In the middle section of the trial, these metabolic changes were concomitant with a possible increase in total hemoglobin–myoglobin. Conclusion: RIPC has no practical ergogenic impact on 1000-m long-track speed-skating performance in elite athletes. The relevance of using RIPC during training to increase physiological stress in sprinters particularly deserves further investigation.

Restricted access

Philippe Richard, Lymperis P. Koziris, Mathieu Charbonneau, Catherine Naulleau, Jonathan Tremblay and François Billaut

Purpose: Nitrate supplementation can increase tolerance to high-intensity work rates; however, limited data exist on the recovery of performance. The authors tested whether 5 d of nitrate supplementation could improve repeated time-trial performance in speed skating. Methods: Using a double-blind, placebo-controlled, crossover design, 9 international-level short-track speed skaters ingested 1 high (juice blend, ∼6.5 mmol nitrate; HI) or low dose (juice blend, ∼1 mmol nitrate; LO) per day on days 1–4. After a double dose of either HI or LO on day 5, athletes performed 2 on-ice 1000-m time trials, separated by 35 min, to simulate competition races. Differences between HI and LO were compared with the smallest practically important difference. Results: Salivary [nitrate] and [nitrite] were higher in HI than LO before the first (nitrate: 81%, effect size [ES]: 1.76; nitrite: 72%, ES: 1.73) and second pursuits (nitrate: 81%, ES: 1.92; nitrite: 71%, ES: 1.78). However, there was no difference in performance in the first (LO: 90.92 [4.08] s; HI: 90.95 [4.06] s, ES: 0.01) or the second time trial (LO: 91.16 [4.06] s; HI: 91.55 [4.40] s, ES: 0.09). Plasma [lactate] measured after the trials (LO: 14.8 [1.1] mM; HI: 14.8 [1.2] mM, ES: 0.01) and at the end of the recovery period (LO: 9.8 [2.1] mM; HI: 10.2 [1.9] mM, ES: 0.05) was not different between treatments. Conclusion: Five days of high-dose nitrate supplementation did not change physiological responses and failed to improve single and repeated time-trial performances in world-class short-track speed skaters. These data suggest that nitrate ingestion up to 6.5 mmol does not enhance recovery from supramaximal exercise in world-class athletes.

Restricted access

Philippe E. Fait and Richard DeMont

Column-editor : Joseph J. Piccininni

Restricted access

Richard Larouche, Emily F. Mire, Kevin Belanger, Tiago V. Barreira, Jean-Philippe Chaput, Mikael Fogelholm, Gang Hu, Estelle V. Lambert, Carol Maher, José Maia, Tim Olds, Vincent Onywera, Olga L. Sarmiento, Martyn Standage, Catrine Tudor-Locke, Peter T. Katzmarzyk, Mark S. Tremblay and For the ISCOLE Research Group

Purpose: This study investigated the relationship between outdoor time and physical activity (PA), sedentary time (SED), and body mass index z scores among children from 12 lower-middle-income, upper-middle-income, and high-income countries. Methods: In total, 6478 children (54.4% girls) aged 9–11 years participated. Outdoor time was self-reported, PA and SED were assessed with ActiGraph GT3X+ accelerometers, and height and weight were measured. Data on parental education, neighborhood collective efficacy, and accessibility to neighborhood recreation facilities were collected from parent questionnaires. Country latitude and climate statistics were collected through national weather data sources. Gender-stratified multilevel models with parental education, climate, and neighborhood variables as covariates were used to examine the relationship between outdoor time, accelerometry measures, and body mass index z scores. Results: Each additional hour per day spent outdoors was associated with higher moderate- to vigorous-intensity PA (boys: +2.8 min/d; girls: +1.4 min/d), higher light-intensity PA (boys: +2.0 min/d; girls: +2.3 min/d), and lower SED (boys: −6.3 min/d; girls: −5.1 min/d). Effect sizes were generally weaker in lower-middle-income countries. Outdoor time was not associated with body mass index z scores. Conclusions: Outdoor time was associated with higher PA and lower SED independent of climate, parental education, and neighborhood variables, but effect sizes were small. However, more research is needed in low- and middle-income countries.