Search Results

You are looking at 1 - 5 of 5 items for

  • Author: R.A. Bell x
  • All content x
Clear All Modify Search
Restricted access

G.W. Davison, C.M. Hughes, and R.A. Bell

The purpose of this investigation was to determine the effects of antioxidant supplementation on DNA damage following exercise. Fourteen subjects were randomly assigned to one of two groups and required to ingest either antioxidants (400 mg α-lipoic acid, 200 mg co-enzyme Q10, 12 mg manganese, 600 mg vitamin C, 800 mg N-acetyl cysteine, 400 μg selenium, and 400 IU α-tocopherol per day) or placebos for 7 d. Exercise increased DNA damage, PS, FRAP, and LDH (P < 0.05), but not selectively between groups. LDH and PS concentration decreased 1 h post-exercise (P < 0.05), while LH concentration decreased 1 h post-exercise in the antioxidant group only (P < 0.05). The antioxidant group had a higher concentration of LH (P < 0.05), perhaps due to a selective difference between groups post-exercise (P < 0.05). The main findings of this investigation demonstrate that exhaustive aerobic exercise induces DNA damage, while anti-oxidant supplementation does not protect against damage.

Restricted access

Timothy C. Mauntel, Eric G. Post, Darin A. Padua, and David R. Bell

A disparity exists between the rates of male and female lower extremity injuries. One factor that may contribute to this disparity is high-risk biomechanical patterns that are commonly displayed by females. It is unknown what biomechanical differences exist between males and females during an overhead squat. This study compared lower extremity biomechanics during an overhead squat and ranges of motion between males and females. An electromagnetic motion tracking system interfaced with a force platform was used to quantify peak lower extremity kinematics and kinetics during the descent phase of each squat. Range of motion measurements were assessed with a standard goniometer. Differences between male and female kinematics, kinetics, and ranges of motion were identified with t tests. Males displayed greater peak knee valgus angle, peak hip flexion angle, peak vertical ground reaction forces, and peak hip extension moments. Males also displayed less active ankle dorsiflexion with the knee extended and hip internal and external rotation than females. No other differences were observed. The biomechanical differences between males and females during the overhead squat may result from differences in lower extremity ranges of motion. Therefore, sex-specific injury prevention programs should be developed to improve biomechanics and ranges of motion.

Restricted access

J.C. Siegler, J. Bell-Wilson, C. Mermier, E. Faria, and R.A. Robergs

The purpose of this study was to profile the effect of active versus passive recovery on acid-base kinetics during multiple bouts of intense exercise. Ten males completed two exercise trials. The trials consisted of three exercise bouts to exhaustion with either a 12 min active (20% workload max) or passive recovery between bouts. Blood pH was lower in the passive (p) recovery compared to active (a) throughout the second and third recovery periods [second recovery: 7.18 ± 0.08 to 7.24 ± 0.09 (p), 7.23 ± 0.07 to 7.32 ± 0.07 (a), P < 0.05; third recovery: 7.17 ± 0.08 to 7.22 ± 0.09 (p), 7.23 ± 0.08 to 7.32 ± 0.08 (a), P < 0.05]. Exercise performance times did not differ between recovery conditions (P = 0.28). No difference was found between conditions for recovery kinetics (slope and half-time to recovery). Subsequent performance during multiple bouts of intense exercise to exhaustion may not be influenced by blood acidosis or mode of recovery.

Full access

Mayrena I. Hernandez, Kevin M. Biese, Dan A. Schaefer, Eric G. Post, David R. Bell, and M. Alison Brooks

Context: Sport specialization among youth athletes has been associated with increased risk of overuse injuries. Previous research demonstrates that children perceive specialization to be beneficial in making their high school team and receiving athletic college scholarships. Previous research demonstrates that parents play a significant role in their child’s sport experience. However, it is unknown if parents and children answer questions related to specialization factors in a similar manner. Objective: To evaluate the beliefs of youth athletes and parents on factors related to sport specialization and evaluate the level of agreement between dyads on sports specialization. Design: Cross-sectional. Setting: Online and paper surveys. Patients or Other Participants: Aim 1: 1998 participants (993 children and 1005 parents). Aim 2: 77 paired parent–child dyads. Interventions: Self-administered survey. Main Outcome Measures: The responses were summarized via frequency and proportions (%). Chi-squares were calculated between parent and child responses. Kappa coefficients were calculated for dyads to determine level of agreement. Sport specialization was classified using a common 3-point scale. Results: The parents were more concerned about risk of injury in sports compared with children (P < .001, χ2 = 231.4; parent: extremely: 7.1%; child: extremely: 3.7%). However, children were more likely to believe that specialization was associated with their chances of obtaining an athletic college scholarship compared with parents (P < .001, χ2 = 201.6; parent: very/extremely likely: 13.7%; child: very/extremely likely: 15.8%). Dyad subanalysis indicated a moderate level of agreement for “quitting other sports to focus on one sport” (κ = .50) and a low level of agreement for “identifying a primary sport” (κ = .30) and “training >8 months per year in primary sport” (κ = .32). Conclusions: Parents and youth athletes had differing beliefs on the factors related to sport specialization. Dyad analysis shows that parents and children answer sport specialization classification questions differently. Health care providers should be aware of these differences, and messaging should be individualized to the audience.

Restricted access

David R. Bell, Megan P. Myrick, J. Troy Blackburn, Sandra J. Shultz, Kevin M. Guskiewicz, and Darin A. Padua

Context:

Preventing noncontact ACL injuries has been a major focus of athletic trainers and researchers. One factor that may influence female noncontact ACL injury is the fluctuating concentrations of hormones in the body.

Objective:

To determine whether muscle properties change across the menstrual cycle.

Design:

Repeated measures. Testing was performed within 3 d after the onset of menses and ovulation. Repeated-measures ANOVAs were used to determine changes in variables across the menstrual cycle, and Pearson correlations were used to determine relationships between variables.

Participants:

8 women with normal menstrual cycles.

Main Outcome Measures:

Active hamstring stiffness and hamstring extensibility.

Results:

Hamstring extensibility (P = .003) increased at the ovulation testing session but hamstring muscle stiffness (P = .66) did not.

Conclusions:

The results indicate that hamstring muscle stiffness did not change across the menstrual cycle and hamstring extensibility increased at ovulation, when estrogen concentration increases.