Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Randall L. Wilber x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Live High + Train Low: Thinking in Terms of an Optimal Hypoxic Dose

Randall L. Wilber

“Live high-train low” (LH+TL) altitude training allows athletes to “live high” for the purpose of facilitating altitude acclimatization, as characterized by a significant and sustained increase in endogenous erythropoietin and subsequent increase in erythrocyte volume, while simultaneously enabling them to “train low” for the purpose of replicating sea-level training intensity and oxygen flux, thereby inducing beneficial metabolic and neuromuscular adaptations. In addition to natural/terrestrial LH+TL, several simulated LH+TL devices have been developed including nitrogen apartments, hypoxic tents, and hypoxicator devices. One of the key issues regarding the practical application of LH+TL is what the optimal hypoxic dose is that is needed to facilitate altitude acclimatization and produce the expected beneficial physiological responses and sea-level performance effects. The purpose of this review is to examine this issue from a research-based and applied perspective by addressing the following questions: What is the optimal altitude at which to live, how many days are required at altitude, and how many hours per day are required? It appears that for athletes to derive the hematological benefits of LH+TL while using natural/terrestrial altitude, they need to live at an elevation of 2000 to 2500 m for >4 wk for >22 h/d. For athletes using LH+TL in a simulated altitude environment, fewer hours (12-16 h) of hypoxic exposure might be necessary, but a higher elevation (2500 to 3000 m) is required to achieve similar physiological responses.

Restricted access

Influence of Carbohydrate Ingestion on Blood Glucose and Performance in Runners

Randall L. Wilber and Robert J. Moffatt

Ten trained male runners performed a treadmill exercise test at 80% VO 2 max under two experimental conditions, carbohydrate (CHO, 7% carbohydrate) and placebo (P), to determine the effect of carbohydrate ingestion on endurance performance (treadmill run time), blood glucose concentration, respiratory exchange ratio (RER), and subjective ratings of perceived exertion (RPE). Treatment order was randomized and counterbalanced and test solutions were administered double-blind. Ingestion took place 5 min preexercise (250 ml) and at 15-min intervals during exercise (125 ml). Performance was enhanced by 29.4% (p ~ 0.05) during CHO (115 ±25 min) compared to P (92 ± 27 min). Blood glucose concentration was significantly greater during CHO (5.6 ± 0.9 mM) relative to P (5.0 ±0.7 mM). There was a significant increase in mean RER following CHO ingestion (.94±.01) compared to P (.90±.01). Average RPE was significantly less during CHO (14.5±2.3) relative to P (15.4±2.4). These data suggest that time to exhaustion of high-intensity treadmill exercise is delayed as a result of carbohydrate ingestion and that this effect is mediated by favorable alterations in blood glucose concentration and substrate utilization.

Restricted access

Kenyan and Ethiopian Distance Runners: What Makes Them so Good?

Randall L. Wilber and Yannis P. Pitsiladis

Since the 1968 Mexico City Olympics, Kenyan and Ethiopian runners have dominated the middle- and longdistance events in athletics and have exhibited comparable dominance in international cross-country and roadracing competition. Several factors have been proposed to explain the extraordinary success of the Kenyan and Ethiopian distance runners, including (1) genetic predisposition, (2) development of a high maximal oxygen uptake as a result of extensive walking and running at an early age, (3) relatively high hemoglobin and hematocrit, (4) development of good metabolic “economy/efficiency” based on somatotype and lower limb characteristics, (5) favorable skeletal-muscle-fiber composition and oxidative enzyme profile, (6) traditional Kenyan/Ethiopian diet, (7) living and training at altitude, and (8) motivation to achieve economic success. Some of these factors have been examined objectively in the laboratory and field, whereas others have been evaluated from an observational perspective. The purpose of this article is to present the current data relative to factors that potentially contribute to the unprecedented success of Kenyan and Ethiopian distance runners, including recent studies that examined potential links between Kenyan and Ethiopian genotype characteristics and elite running performance. In general, it appears that Kenyan and Ethiopian distance-running success is not based on a unique genetic or physiological characteristic. Rather, it appears to be the result of favorable somatotypical characteristics lending to exceptional biomechanical and metabolic economy/efficiency; chronic exposure to altitude in combination with moderate-volume, high-intensity training (live high + train high), and a strong psychological motivation to succeed athletically for the purpose of economic and social advancement.