Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Reinoud J. Bootsma x
Clear All Modify Search
Restricted access

Violaine Sevrez, Guillaume Rao, Eric Berton and Reinoud J. Bootsma

Five elite gymnasts performed giant circles on the high bar under different conditions of loading (without and with 6-kg loads attached to the shoulders, waist or ankles). Comparing the gymnasts’ kinematic pattern of movement with that of a triple-pendulum moving under the sole influence of nonmuscular forces revealed qualitative similarities, including the adoption of an arched position during the downswing and a piked position during the upswing. The structuring role of nonmuscular forces in the organization of movement was further reinforced by the results of an inverse dynamics analysis, assessing the contributions of gravitational, inertial and muscular components to the net joint torques. Adding loads at the level of the shoulders, waist or ankles systematically influenced movement kinematics and net joint torques. However, with the loads attached at the level of the shoulders or waist, the load-induced changes in gravitational and inertial torques provided the required increase in net joint torque, thereby allowing the muscular torques to remain unchanged. With the loads attached at the level of the ankles, this was no longer the case and the gymnasts increased the muscular torques at the shoulder and hip joints. Together, these results demonstrate that expert gymnasts skillfully exploit the operative nonmuscular forces, employing muscle force only in the capacity of complementary forces needed to perform the task.

Restricted access

Olivier Oullier, Benoît G. Bardy, Thomas A. Stoffregen and Reinoud J. Bootsma

Surfaces shorter in extent than the feet elicit multi-joint coordination that differs from what is elicited by stance on extensive surfaces. This well-known effect arises from the mechanics of the actor-environment interaction. Multi-joint control of stance is also known to be influenced by non-mechanical aspects of a situation, including participants' task or intention. Intentional constraints do not originate in mechanics, and for this reason one might suppose that constraints imposed by mechanics would dominate constraints imposed by intentions, when the two were in conflict. We evaluated this hypothesis by varying participants' supra-postural task during stance on a short surface. While standing on a 10-cm wide beam, participants were exposed to optic flow generated by fore-aft oscillations of a moving room. Participants faced a target attached to the front wall of the moving room and were asked either to look at the target (with no instruction to move) or intentionally to track it with their head (i.e., to keep the target-head distance constant). Within trials, we varied the frequency of room (and target) motion, from 0.15 to 0.75 Hz, in steps of 0.05 Hz. In both conditions, ankle and hip rotations exhibited antiphase coordination, but behavior was not identical across conditions. Coupling between motion of the room and the head was stronger for the tracking task than for the looking task, and the stability of ankle-hip coordination was greater during tracking than during looking. These results indicate that the influence of support surface mechanics did not eliminate the influence of the supra-postural task. Environment-based and task-based constraints interacted in determining the coordination of hips and ankles during stance.