Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Rezaul K. Begg x
Clear All Modify Search
Restricted access

William A. Sparrow, Rezaul K. Begg and Suzanne Parker

Visual reaction time (RT) was measured in 10 older men (mean age, 71.1 years) and gender-matched controls (mean age, 26.3 years) when standing (single task) and when walking on a motor-driven treadmill (dual task). There were 90 quasirandomly presented trials over 15 min in each condition. Longer mean and median RTs were observed in the dual task compared to the single task. Older males had significantly slower mean and median RTs (315 and 304 ms, respectively) than the younger group (273 and 266 ms, respectively) in both task conditions. There were no age or condition effects on within-subject variability. Both groups showed a trend of increasing RT over the 90 single task trials but when walking only the younger group slowed. These novel findings demonstrate high but sustained attention by older adults when walking. It is proposed that the motor task’s attentional demands might contribute to their slower preferred walking speed.

Restricted access

Hanatsu Nagano, Rezaul K. Begg, William A. Sparrow and Simon Taylor

Although lower limb strength becomes asymmetrical with age, past studies of aging effects on gait biomechanics have usually analyzed only one limb. This experiment measured how aging and treadmill surface influenced both dominant and nondominant step parameters in older (mean 74.0 y) and young participants (mean 21.9 y). Step-cycle parameters were obtained from 3-dimensional position/time data during preferred-speed walking for 40 trials along a 10 m walkway and for 10 minutes of treadmill walking. Walking speed (young 1.23 m/s, older 1.24 m/s) and step velocity for the two age groups were similar in overground walking but older adults showed significantly slower walking speed (young 1.26 m/s, older 1.05 m/s) and step velocity on the treadmill due to reduced step length and prolonged step time. Older adults had shorter step length than young adults and both groups reduced step length on the treadmill. Step velocity and length of older adults’ dominant limb was asymmetrically larger. Older adults increased the proportion of double support in step time when treadmill walking. This adaptation combined with reduced step velocity and length may preserve balance. The results suggest that bilateral analyses should be employed to accurately describe asymmetric features of gait especially for older adults.