Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Rhys M. Thorp x
Clear All Modify Search
Restricted access

David S. Rowlands, Rhys M. Thorp, Karin Rossler, David F. Graham and Mike J. Rockell

Carbohydrate ingestion after prolonged strenuous exercise enhances recovery, but protein might also be important. In a crossover with 2-wk washout, 10 cyclists completed 2.5 h of intervals followed by 4-h recovery feeding, provided 218 g protein, 435 g carbohydrate, and 79 g fat (protein enriched) or 34 g protein, 640 g carbohydrate, and 79 g fat (isocaloric control). The next morning, cyclists performed 10 maximal constant-work sprints on a Velotron cycle ergometer, each lasting ~2.5 min, at ~5-min intervals. Test validity was established and test reliability and the individual response to the protein-enriched condition estimated by 6 cyclists’ repeating the intervals, recovery feeding, and performance test 2 wk later in the protein-enriched condition. During the 4-h recovery, the protein-enriched feeding had unclear effects on mean concentrations of plasma insulin, cortisol, and growth hormone, but testosterone was 25% higher (90% confidence limits, ± 14%). Protein enrichment also reduced plasma creatine kinase by 33% (±38%) the next morning and reduced tiredness and leg-soreness sensations during the sprints, but effects on mean sprint power were unclear (–1.4%, ±4.3%). The between-subjects trial-to-trial coefficient of variation in overall mean sprint power was 3.1% (±3.4%), whereas the variation in the protein-enriched condition was 5.9% (±6.9%), suggesting that individual responses to the protein-enriched treatment contributed to the unclear performance outcome. To conclude, protein-enriched recovery feeding had no clear effect on next-day performance.