Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Ric J. Lovell x
Clear All Modify Search
Restricted access

Lars R. McNaughton, Steve Kenney, Jason Siegler, Adrian W. Midgley, Ric J. Lovell and David J. Bentley

Context:

Recently, superoxygenated-water beverages have emerged as a new purported ergogenic substance.

Purpose:

This study aimed to determine the effects of superoxygenated water on submaximal endurance performance.

Methods:

Eleven active male subjects, VO2max 52.6 ± 4.8 mL · kg−1 · min−1, height 180.0 ± 2.0 cm, weight 76.0 ± 7.0 kg, age 24 ± 1.0 y (mean ± SD), completed a 45-min cycle-ergometry exercise test at 70% of their previously predicted maximal power output with a 10-min rest period, followed by a 15-min time trial (TT). Thirty minutes before the exercise test subjects consumed 15 mL of either superoxygenated water (E) or placebo (P; water mixed with low-chlorine solution). Subjects then completed the test again a week later for the other condition (double-blind, randomized). The physiological variables measured during exercise were VO2, VCO2, respiratory-exchange ratio (RER), VE, PO2, PCO2, blood lactate (bLa–), and heart rate (HR). Mean distance covered and the average power output for the 15-min TT were also measured as performance indicators.

Results:

There were no significant differences in VO2, VCO2, RER, VE, bLa, PO2, and HR (P > .05) during the exercise tests. Neither were there any significant improvements in the total distance covered (P 9.01 ± 0.74 km vs E 8.96 ± 0.68 km, P > .05) or the average power output (P 186.7 ± 35.8 W vs E 179.0 ± 25.9 W, P > .05) during the 15-min TT.

Conclusion:

Based on these results the authors conclude that consuming 15 mL of superoxygenated water does not enhance submaximal or maximal TT cycling performance.

Open access

James J. Malone, Ric Lovell, Matthew C. Varley and Aaron J. Coutts

Athlete-tracking devices that include global positioning system (GPS) and microelectrical mechanical system (MEMS) components are now commonplace in sport research and practice. These devices provide large amounts of data that are used to inform decision making on athlete training and performance. However, the data obtained from these devices are often provided without clear explanation of how these metrics are obtained. At present, there is no clear consensus regarding how these data should be handled and reported in a sport context. Therefore, the aim of this review was to examine the factors that affect the data produced by these athlete-tracking devices and to provide guidelines for collecting, processing, and reporting of data. Many factors including device sampling rate, positioning and fitting of devices, satellite signal, and data-filtering methods can affect the measures obtained from GPS and MEMS devices. Therefore researchers are encouraged to report device brand/model, sampling frequency, number of satellites, horizontal dilution of precision, and software/firmware versions in any published research. In addition, details of inclusion/exclusion criteria for data obtained from these devices are also recommended. Considerations for the application of speed zones to evaluate the magnitude and distribution of different locomotor activities recorded by GPS are also presented, alongside recommendations for both industry practice and future research directions. Through a standard approach to data collection and procedure reporting, researchers and practitioners will be able to make more confident comparisons from their data, which will improve the understanding and impact these devices can have on athlete performance.

Restricted access

Matthew Weston, Warren Gregson, Carlo Castagna, Simon Breivik, Franco M. Impellizzeri and Ric J. Lovell

Athlete case studies have often focused on the training outcome and not the training process. Consequently, there is a dearth of information detailing longitudinal training protocols, yet it is the combined assessment of both outcome and process that enhances the interpretation of physical test data. We were provided with a unique opportunity to assess the training load, physical match performance, and physiological fitness of an elite soccer referee from the referee’s final season before attaining full-time, professional status (2002) until the season when he refereed the 2010 UEFA Champions League and FIFA World Cup finals. An increased focus on on-field speed and gym-based strength training was observed toward the end of the study period and longitudinal match data showed a tendency for decreased total distances but an increased intensity of movements. Laboratory assessments demonstrated that VO2max remained stable (52.3 vs 50.8 mL-kg–1-min–1), whereas running speed at the lactate threshold (14.0 vs 12.0 km-h-1) and running economy (37.3 vs 43.4 mLkg–1min–1) both improved in 2010 compared with 2002.

Restricted access

Matthew Weston, Alan M. Batterham, Carlo Castagna, Matthew D. Portas, Christopher Barnes, Jamie Harley and Ric J. Lovell

Purpose:

Soccer referees’ physical match performances at the start of the second half (46–60 min) were evaluated in relation to both the corresponding phase of the first half (0–15 min) and players’ performances during the same match periods.

Methods:

Match analysis data were collected (Prozone, UK) from 12 soccer referees on 152 English Premier League matches during the 2008/09 soccer season. Physical match performance categories for referees and players were total distance, high-speed running distance (speed >5.5 m/s), and sprinting distance (>7.0 m/s). The referees’ heart rate was recorded from the start of their warm-up to the end of the match. The referees’ average distances (in meters) from the ball and fouls were also calculated.

Results:

No substantial differences were observed in duration (16:42 ± 2:35 vs 16:27 ± 1:00 min) or intensity (107 ± 11 vs 106 ± 14 beats/min) of the referees’ preparation periods immediately before each half. Physical match performance was reduced during the initial phase of the second half when compared with the first half in both referees (effect sizes—standardized mean differences—0.19 to 0.73) and players (effect sizes 0.20 to 1.01). The degree of the decreased performance was consistent between referees and players for total distance (4.7 m), high-speed running (1.5 m), and sprinting (1.1 m). The referees were closer to the ball (effect size 0.52) during the opening phase the second half.

Conclusion:

Given the similarity in the referees’ preparation periods, it may be that the reduced physical match performances observed in soccer referees during the opening stages of the second half are a consequence of a slower tempo of play.