Search Results

You are looking at 1 - 10 of 19 items for

  • Author: Ricardo J. Fernandes x
Clear All Modify Search
Restricted access

Ana Gay, Gracia López-Contreras, Ricardo J. Fernandes and Raúl Arellano

Purpose:

The aim of the current study was to observe the changes in performance, physiological and general kinematical variables induced by the wetsuit vs swimsuit use in both swimming pool and swimming flume conditions.

Methods:

Following a randomized and counterbalanced order, 33 swimmers (26.46±11.72 years old) performed 2x400m maximal front crawl in a 25m swimming pool (with wetsuit and swimsuit) and its mean velocities were used afterwards in two swimming flume trials with both suits. Velocity, blood lactate concentrations ([La-]), heart rate (HR), Borg scale (RPE), stroke rate (SR), stroke length (SL), stroke index (SI) and propelling efficiency (ηp) were evaluated.

Results:

Swimming pool 400m performance was 0.07m·s-1 faster when using the wetsuit than swimsuit, evidencing a reduction of ~6% in time performed (p<0.001). HRmax, [La-]max, RPE, SR and ηp were similar when using both swimsuits but SL and SI presented higher values with the wetsuit both in swimming pool and swimming flume. Comparing swimming conditions, HRmax and [La-]max were lower, and SL, SI and ηp were higher, while swimming in the flume than in the pool both with wet and swimsuit.

Conclusions:

The 6% velocity improvement was the result of an increase of 4% in SL. Swimmers reduced SR and increased SL to benefit from the hydrodynamic reduction of the wetsuit and increase the swimming efficiency. The wetsuit might be utilized during the training seasons to improve the adaptations while swimming.

Restricted access

Pedro G. Morouço, João P. Vilas-Boas and Ricardo J. Fernandes

Our purpose was to demonstrate that 30-s tethered swimming test can be a useful tool to estimate swimming performance in short distance freestyle events. Thirteen high level adolescent swimmers (7 male and 6 female of16.6 ± 1.0 and 15.8 ± 0.8 years old) performed a 30-s maximum effort in front crawl tethered swimming. Afterward, subjects completed 50-m and 100-m freestyle events at the National Championships. Both maximum and mean force values obtained in the tethered test related directly with 50-m (r = .78 and r = .72, p < .01, respectively) and 100-m freestyle velocities (r = .63 and r = .61, p < .05, respectively). Fatigue index did not present a significant relationship with any of the studied performance variables. However, a proposed parameter—fatigue slope—correlated with 50-m (r=-.75, p < .01), 100-m performances (r=-.57, p < .05) and with r[La] (r=-.90, p < .01). It is concluded that, for adolescent swimmers, values obtained from 30-s tethered test are well related with swimming performance in sprint events. In addition, fatigue slope seems to be more associated with swimming performance in short distance events than fatigue index.

Restricted access

Pedro Figueiredo, Ana Silva, António Sampaio, João Paulo Vilas-Boas and Ricardo J. Fernandes

The aim of this study was to evaluate the determinants of front crawl sprint performance of young swimmers using a cluster analysis. 103 swimmers, aged 11- to 13-years old, performed 25-m front crawl swimming at 50-m pace, recorded by two underwater cameras. Swimmers analysis included biomechanics, energetics, coordinative, and anthropometric characteristics. The organization of subjects in meaningful clusters, originated three groups (1.52 ± 0.16, 1.47 ± 0.17 and 1.40 ± 0.15 m/s, for Clusters 1, 2 and 3, respectively) with differences in velocity between Cluster 1 and 2 compared with Cluster 3 (p = .003). Anthropometric variables were the most determinants for clusters solution. Stroke length and stroke index were also considered relevant. In addition, differences between Cluster 1 and the others were also found for critical velocity, stroke rate and intracycle velocity variation (p < .05). It can be concluded that anthropometrics, technique and energetics (swimming efficiency) are determinant domains to young swimmers sprint performance.

Restricted access

Ana Sousa, Pedro Figueiredo, David Pendergast, Per-Ludvik Kjendlie, João P. Vilas-Boas and Ricardo J. Fernandes

Swimming has become an important area of sport science research since the 1970s, with the bioenergetic factors assuming a fundamental performance-influencing role. The purpose of this study was to conduct a critical evaluation of the literature concerning oxygen-uptake (VO2) assessment in swimming, by describing the equipment and methods used and emphasizing the recent works conducted in ecological conditions. Particularly in swimming, due to the inherent technical constraints imposed by swimming in a water environment, assessment of VO2max was not accomplished until the 1960s. Later, the development of automated portable measurement devices allowed VO2max to be assessed more easily, even in ecological swimming conditions, but few studies have been conducted in swimming-pool conditions with portable breath-by-breath telemetric systems. An inverse relationship exists between the velocity corresponding to VO2max and the time a swimmer can sustain it at this velocity. The energy cost of swimming varies according to its association with velocity variability. As, in the end, the supply of oxygen (whose limitation may be due to central—O2 delivery and transportation to the working muscles—or peripheral factors—O2 diffusion and utilization in the muscles) is one of the critical factors that determine swimming performance, VO2 kinetics and its maximal values are critical in understanding swimmers’ behavior in competition and to develop efficient training programs.

Restricted access

Pedro Figueiredo, Renata Willig, Francisco Alves, João Paulo Vilas-Boas and Ricardo J. Fernandes

Purpose:

To examine the effect of swimming speed (v) on the biomechanical and physiological responses of a trained front-crawl swimmer with a unilateral arm amputation.

Methods:

A 13-y-old girl with a unilateral arm amputation (level of the elbow) was tested for stroke length (SL, horizontal displacement cover with each stroke cycle), stroke frequency (SF, inverse of the time to complete each stroke cycle), adapted index of coordination (IdCadapt, lag time between propulsive phases), intracycle velocity variation (IVV, coefficient of variation of the instantaneous velocity–time data), active drag (D, hydrodynamic resistance), and energy cost (C, ratio of metabolic power to speed) during trials of increasing v.

Results:

Swimmer data showed a positive relationship between v and SF (R 2 = 1, P < .001), IVV (R 2 = .98, P = .002), D (R 2 = .98, P < .001), and C (R 2 = .95, P = .001) and a negative relationship with the SL (R 2 = .99, P = .001). No relation was found between v and IdCadapt (R 2 = .35, P = .22). A quadratic regression best fitted the relationship between v and general kinematical parameters (SL and SF); a cubic relationship fit the IVV best. The relationship between v and D was best expressed by a power regression, and the linear regression fit the C and IdCadapt best.

Conclusions:

The subject’s adaptation to increased v was different from able-bodied swimmers, mainly on interarm coordination, maintaining the lag time between propulsive phases, which influence the magnitude of the other parameters. These results might be useful to develop specific training and enhance swimming performance in swimmers with amputations.

Restricted access

Ana Silva, Pedro Figueiredo, Susana Soares, Ludovic Seifert, João Paulo Vilas-Boas and Ricardo J. Fernandes

Our aim was to characterize front crawl swimming performed at very high intensity by young practitioners. 114 swimmers 11–13 years old performed 25 m front crawl swimming at 50 m pace. Two underwater cameras was used to assess general biomechanical parameters (velocity, stroke rate, stroke length and stroke index) and interarm coordination (Index of Coordination), being also identified each front crawl stroke phase. Swimmers presented lower values in all biomechanical parameters than data presented in studies conducted with older swimmers, having the postpubertal group closest values to adult literature due to their superior anthropometric and maturational characteristics. Boys showed higher velocity and stroke index than girls (as reported for elite swimmers), but higher stroke rate than girls (in opposition to what is described for adults). In addition, when considering the total sample, a higher relationship was observed between velocity and stroke length (than with stroke rate), indicating that improving stroke length is a fundamental skill to develop in these ages. Furthermore, only catch-up coordination mode was adopted (being evident a lag time between propulsion of the arms), and the catch and the pull phases presented the highest and smallest durations, respectively.

Restricted access

Ana Sousa, João Paulo Vilas-Boas, Ricardo J. Fernandes and Pedro Figueiredo

Purpose:

To establish appropriate work intensity for interval training that would elicit maximal oxygen uptake (VO2max) for well-trained swimmers.

Methods:

Twelve male competitive swimmers completed an incremental protocol to determine the minimum velocity at VO2max (νVO2max) and, in randomized order, 3 square-wave exercises from rest to 95%, 100%, and 105% of νVO2max. Temporal aspects of the VO2 response were examined in these latter.

Results:

Swimming at 105% of νVO2max took less (P < .04) absolute time to achieve 90%, 95%, and 100% of VO2max intensities (35.0 ± 7.7, 58.3 ± 15.9, 58.3 ± 19.3 s) compared with 95% (72.1 ± 34.3, 106.7 ± 43.9, 151.1 ± 52.4 s) and 100% (55.8 ± 24.5, 84.2 ± 35.4, 95.6 ± 29.8 s) of VO2max. However, swimming at 95% of νVO2max resulted in longer absolute time (P < .001) at or above the desired intensities (90%: 268.3 ± 72.5 s; 95%: 233.8 ± 74.3 s; 100%: 173.6 ± 78.2 s) and more relative time at or above 95% of VO2max than 105% of νVO2max (68.6% ± 13.5% vs 55.3% ± 11.5%, P < .03), and at or above 100% of VO2max than 100% and 105% of νVO2max (52.7% ± 16.3% vs 28.2% ± 10.5% and 34.0% ± 11.3%, P < .001). At 60 s of effort, swimmers achieved 85.8% ± 11.2%, 88.3% ± 5.9%, and 94.7% ± 5.5% of the VO2max when swimming at 95%, 100%, and 105% of νVO2max, respectively.

Conclusions:

When training to elicit VO2max, using higher swimming intensities will promote a faster VO2 response but a shorter time spent above these intensities. However, lower intensities allow maintaining the desired response for a longer period of time. Moreover, using the 60-s time period seem to be a more adequate stimulus than shorter ones (~30-s), especially when performed at 105% of νVO2max intensity.

Restricted access

Ana F. Silva, Pedro Figueiredo, Sara Morais, João P. Vilas-Boas, Ricardo J. Fernandes and Ludovic Seifert

This study aimed to examine young swimmers’ behavioral flexibility when facing different task constraints, such as swimming speed and stroke frequency. Eighteen (five boys and 13 girls) 13- to 15-year-old swimmers performed a 15 × 50-m front crawl with five trials, at 100%, 90%, and 70% each of their 50 m maximal swimming speed and randomly at 90%, 95%, 100%, 105%, and 110% of their preferred stroke frequency. Seven aerial and six underwater cameras were used to assess kinematics (one cycle), with upper-limb coordination computed through a continuous relative phase and index of coordination. A cluster analysis identified six patterns of coordination used by swimmers when facing various speed and stroke frequency constraints. The patterns’ nature and the way the swimmers shifted between them are more important than getting the highest number of patterns (range of repertoire), that is, a change in the motor pattern in order to adapt correctly is more important than being able to execute a great number of patterns.

Restricted access

Susana M. Soares, Ricardo J. Fernandes, J. Leandro Machado, José A. Maia, Daniel J. Daly and João P. Vilas-Boas

Context:

It is essential to determine swimmers’ anaerobic potential and better plan training, understanding physiological effects of the fatigue.

Purpose:

To study changes in the characteristics of the intracyclic velocity variation during an all-out 50-m swim and to observe differences in speed and stroking parameters between these changes.

Methods:

28 competitive swimmers performed a 50-m front-crawl all-out test while attached to a speedometer. The velocity–time (v[t]) curve off all stroke cycles was analyzed per individual using a routine that included a wavelet procedure, allowing the determination of the fatigue thresholds that divide effort in time intervals.

Results:

One or 2 fatigue thresholds were observed at individual level on the v(t) curve. In males, when 1 fatigue threshold was identified, the mean velocity and the stroke index dropped (P < .05) in the second time interval (1.7 ± 0.0 vs 1.6 ± 0.0 m/s and 3.0 ± 0.2 vs 2.8 ± 0.3 m/s, respectively). When 2 fatigue thresholds were identified, the mean velocity of the first time interval was higher than that of the third time interval (P < .05), for both male (1.7 ± 0.0 vs 1.6 ± 0.1 m/s) and female (1.5 ± 0.1 vs 1.3 ± 0.1 m/s) swimmers.

Conclusion:

One or 2 fatigue thresholds were found in the intracyclic velocity-variation patterns. Concurrently, changes in velocity and stroke parameters were also observed between time intervals. This information could allow coaches to obtain new insights into delaying the degenerative effects of fatigue and maintain stable stroke-cycle characteristics over a 50-m event.

Restricted access

Tiago M. Barbosa, Kelly de Jesus, J. Arturo Abraldes, João Ribeiro, Pedro Figueiredo, João Paulo Vilas-Boas and Ricardo J. Fernandes

Background:

The assessment of energetic and mechanical parameters in swimming often requires the use of an intermittent incremental protocol, whose step lengths are corner stones for the efficiency of the evaluation procedures.

Purpose:

To analyze changes in swimming kinematics and interlimb coordination behavior in 3 variants, with different step lengths, of an intermittent incremental protocol.

Methods:

Twenty-two male swimmers performed n × d i variants of an intermittent and incremental protocol (n ≤ 7; d 1 = 200 m, d 2 = 300 m, and d 3 = 400 m). Swimmers were videotaped in the sagittal plane for 2-dimensional kinematical analysis using a dualmedia setup. Video images were digitized with a motion-capture system. Parameters that were assessed included the stroke kinematics, the segmental and anatomical landmark kinematics, and interlimb coordination. Movement efficiency was also estimated.

Results:

There were no significant variations in any of the selected variables according to the step lengths. A high to very high relationship was observed between step lengths. The bias was much reduced and the 95%CI fairly tight.

Conclusions:

Since there were no meaningful differences between the 3 protocol variants, the 1 with shortest step length (ie, 200 m) should be adopted for logistical reasons.