Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Rich S.W. Masters x
Clear All Modify Search
Restricted access

Neha Malhotra, Jamie M. Poolton, Mark R. Wilson, Liis Uiga and Rich S.W. Masters

Two experiments examined the roles of the dimensions of movement-specific reinvestment (movement selfconsciousness and conscious motor processing) on performance under demanding conditions. In Experiment 1, novice golfers practiced a golf putting task and were tested under low- and high-anxiety conditions. Conscious motor processing was not associated with putting proficiency or movement variability; however, movement self-consciousness was positively associated with putting proficiency and appeared to be negatively associated with variability of impact velocity in low-anxiety conditions, but not in high-anxiety conditions. Increased anxiety and effort possibly left few attention resources for movement self-consciousness under high anxiety. In Experiment 2, participants performed a quiet standing task in single- and dual-task conditions. Movement self-consciousness was positively associated with performance when attention demands were low (single task) but not when attention demands were high (dual task). The findings provide insight into the differential influence of the two dimensions of movement-specific reinvestment under demanding conditions.

Restricted access

Matthieu M. de Wit, Rich S.W. Masters and John van der Kamp

Based upon evidence that vision for action has quicker access to visual information than vision for perception, we hypothesized that the two systems may have differentiated visual thresholds. There is also evidence that, unlike vision for perception, vision for action is insensitive to cognitive dual-task interference. Using visual masking, we determined the visual thresholds of 15 participants in a perception task, an action task and an action plus concurrent cognitive secondary task. There was no difference in threshold between the perception task and the action task, but the action plus concurrent secondary task was accompanied by a greater visual threshold than both the perception task and the action task alone, indicating dual-task interference. The action task was thus most likely informed by vision for perception. The implications of these results are reviewed in the context of recent discussions of the two visual systems model.