Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Robert J. Naughton x
Clear All Modify Search
Restricted access

Liam D. Harper, Adam Field, Liam D. Corr and Robert J. Naughton

The aim of this investigation was to profile the physiological, physical, and biomechanical responses during walking football. A total of 17 male participants (aged 66 ± 6 years) participated. Heart rate; blood lactate; accelerometer variables (biomechanical load [PlayerLoad], changes of direction); and rating of perceived exertion were measured. Participants mean percentage of maximum heart rate was 76 ± 6% during the sessions, with rating of perceived exertion across all sessions at 13 ± 2. Blood lactate increased by ∼157% from presession (1.24 ± 0.4 mmol/L) to postsession (3.19 ± 1.7 mmol/L; p ≤ .0005). PlayerLoad values of 353 ± 67 arbitrary units were observed, as well as ∼100 changes of direction per session. In conclusion, walking football is a moderate- to vigorous-intensity activity. The longitudinal health benefits of walking football remain to be elucidated, particularly on bone health, cardiovascular fitness, and social and mental well-being.

Restricted access

Robert J. Naughton, Barry Drust, Andy O’Boyle, Ryland Morgans, Julie Abayomi, Ian G. Davies, James P. Morton and Elizabeth Mahon

While traditional approaches to dietary analysis in athletes have focused on total daily energy and macronutrient intake, it is now thought that daily distribution of these parameters can also influence training adaptations. Using 7-day food diaries, we quantified the total daily macronutrient intake and distribution in elite youth soccer players from the English Premier League in U18 (n = 13), U15/16 (n = 25) and U13/14 squads (n = 21). Total energy (43.1 ± 10.3, 32.6 ± 7.9, 28.1 ± 6.8 kcal·kg-1·day-1), CHO (6 ± 1.2, 4.7 ± 1.4, 3.2 ± 1.3 g·kg- 1·day-1) and fat (1.3 ± 0.5, 0.9 ± 0.3, 0.9 ± 0.3 g·kg-1·day-1) intake exhibited hierarchical differences (p < .05) such that U13/14 > U15/16 > U18. In addition, CHO intake in U18s was lower (p < .05) at breakfast, dinner and snacks when compared with both squads but no differences were apparent at lunch. Furthermore, the U15/16s reported lower relative daily protein intake than the U13/14s and U18s (1.6 ± 0.3 vs. 2.2 ± 0.5, 2.0 ± 0.3 g·kg-1). A skewed distribution (p < .05) of daily protein intake was observed in all squads, with a hierarchical order of dinner (~0.6 g·kg-1) > lunch (~0.5 g·kg-1) > breakfast (~0.3 g·kg-1). We conclude elite youth soccer players do not meet current CHO guidelines. Although daily protein targets are achieved, we report a skewed daily distribution in all ages such that dinner > lunch > breakfast. Our data suggest that dietary advice for elite youth players should focus on both total daily macronutrient intake and optimal daily distribution patterns.

Restricted access

Liam Anderson, Robert J. Naughton, Graeme L. Close, Rocco Di Michele, Ryland Morgans, Barry Drust and James P. Morton

The daily distribution of macronutrient intake can modulate aspects of training adaptations, performance and recovery. We therefore assessed the daily distribution of macronutrient intake (as assessed using food diaries supported by the remote food photographic method and 24-hr recalls) of professional soccer players (n = 6) of the English Premier League during a 7-day period consisting of two match days and five training days. On match days, average carbohydrate (CHO) content of the prematch (<1.5 g·kg-1 body mass) and postmatch (1 g·kg-1 body mass) meals (in recovery from an evening kick-off) were similar (p > .05) though such intakes were lower than contemporary guidelines considered optimal for prematch CHO intake and postmatch recovery. On training days, we observed a skewed and hierarchical approach (p < .05 for all comparisons) to protein feeding such that dinner (0.8 g·kg-1)>lunch (0.6 g·kg-1)>breakfast (0.3 g·kg-1)>evening snacks (0.1 g·kg-1). We conclude players may benefit from consuming greater amounts of CHO in both the prematch and postmatch meals so as to increase CHO availability and maximize rates of muscle glycogen resynthesis, respectively. Furthermore, attention should also be given to ensuring even daily distribution of protein intake so as to potentially promote components of training adaptation.

Restricted access

Liam D. Corr, Adam Field, Deborah Pufal, Jenny Killey, Tom Clifford, Liam D. Harper and Robert J. Naughton

Polyphenol consumption has become a popular method of trying to temper muscle damage. Cocoa flavanols (CF) have attracted attention due to their high polyphenol content and palatability. As such, this study will investigate whether an acute dose of CF can aid recovery following exercise-induced muscle damage. The study was a laboratory-based, randomized, single-blind, nutrient-controlled trial involving 23 participants (13 females and 10 males). Participants were randomized into either control ∼0 mg CF (n = 8, four females); high dose of 830 mg CF (CF830, n = 8, five females); or supra dose of 1,245 mg CF (CF1245, n = 7, four females). The exercise-induced muscle damage protocol consisted of five sets of 10 maximal concentric/eccentric hamstring curls and immediately consumed their assigned drink following completion. To measure muscle recovery, maximal voluntary isometric contraction (MVIC) of the knee flexors at 60° and 30°, a visual analog scale (VAS), and lower-extremity function scale were taken at baseline, immediately, 24-, 48-, and 72-hr postexercise-induced muscle damage. There was a main effect for time for all variables (p < .05). However, no significant differences were observed between groups for all measures (p ≥ .17). At 48 hr, there were large effect sizes between control and CF1245 for MVIC60 (p = .17, d = 0.8); MVIC30 (p = .26, d = 0.8); MVIC30 percentage change (p = .24 d = 0.9); and visual analog scale (p = .25, d = 0.9). As no significant differences were observed following the consumption of CF, there is reason to believe that CF offer no benefit for muscle recovery when ingested acutely.

Restricted access

Liam Anderson, Patrick Orme, Robert J. Naughton, Graeme L. Close, Jordan Milsom, David Rydings, Andy O’Boyle, Rocco Di Michele, Julien Louis, Catherine Hambly, John Roger Speakman, Ryland Morgans, Barry Drust and James P. Morton

In an attempt to better identify and inform the energy requirements of elite soccer players, we quantified the energy expenditure (EE) of players from the English Premier League (n = 6) via the doubly labeled water method (DLW) over a 7-day in-season period. Energy intake (EI) was also assessed using food diaries, supported by the remote food photographic method and 24 hr recalls. The 7-day period consisted of 5 training days (TD) and 2 match days (MD). Although mean daily EI (3186 ± 367 kcals) was not different from (p > .05) daily EE (3566 ± 585 kcals), EI was greater (p < .05) on MD (3789 ± 532 kcal; 61.1 ± 11.4 kcal.kg-1 LBM) compared with TD (2956 ± 374 kcal; 45.2 ± 9.3 kcal.kg-1 LBM, respectively). Differences in EI were reflective of greater (p < .05) daily CHO intake on MD (6.4 ± 2.2 g.kg-1) compared with TD (4.2 ± 1.4 g.kg-1). Exogenous CHO intake was also different (p < .01) during training sessions (3.1 ± 4.4 g.h-1) versus matches (32.3 ± 21.9 g.h-1). In contrast, daily protein (205 ± 30 g.kg-1, p = .29) and fat intake (101 ± 20 g, p = .16) did not display any evidence of daily periodization as opposed to g.kg-1, Although players readily achieve current guidelines for daily protein and fat intake, data suggest that CHO intake on the day before and in recovery from match play was not in accordance with guidelines to promote muscle glycogen storage.