Search Results

You are looking at 1 - 9 of 9 items for

  • Author: Robert Kenefick x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Samuel N. Cheuvront and Robert W. Kenefick

This study sought to (a) estimate how the duration of running influences sweat losses and contributes to the daily fluid requirement, and (b) empirically estimate the drinking rates required to prevent significant dehydration (≥2% body weight as body water). Individual sweating data and running duration were obtained from male (n = 83) and female (n = 36) runners (n = 146 total observations) performing under highly heterogeneous conditions and over a range of exercise durations (33–280 min). Running <60 min/day increased daily fluid needs by a factor of 1.3, whereas running >60 min/day increased the daily fluid need by a factor of 1.9–2.3. Running <60 min/day generally required no fluid intake to prevent significant dehydration before run completion (31/35 runners). In contrast, running >60 min/day required more than 50% replacement of sweating rates to prevent the same (65/111 runners). Overall sweat losses ranged from ∼0.2 to ∼5.0 L/day, whereas the drinking rates required to prevent significant dehydration ranged from 0 to 1.4 L/hr. The characterization of sweat losses, sweat rate, and required drinking among runners in this study indicate wide individual variability that warrants personalized hydration practices, particularly when running is prolonged (>60 min) and performance is important. This study may serve as a useful guidepost for sports dietitians when planning and communicating fluid needs to athletes, as well as complement guidance related to both personalized programmed and thirst-driven drinking strategies.

Full access

Samuel N. Cheuvront, Robert W. Kenefick, and Edward J. Zambraski

A common practice in sports science is to assess hydration status using the concentration of a single spot urine collection taken at any time of day for comparison against concentration (specific gravity, osmolality, color) thresholds established from first morning voids. There is strong evidence that this practice can be confounded by fluid intake, diet, and exercise, among other factors, leading to false positive/negative assessments. Thus, the purpose of this paper is to provide a simple explanation as to why this practice leads to erroneous conclusions and should be curtailed in favor of consensus hydration assessment recommendations.

Restricted access

Joseph F. Seay, Brett R. Ely, Robert W. Kenefick, Shane G. Sauer, and Samuel N. Cheuvront

We examined the effect of body water deficits on standing balance and sought to determine if plasma hyperosmolality (Posm) and/or volume reduction (%ΔVplasma) exerted independent effects. Nine healthy volunteers completed three experimental trials which consisted of a euhydration (EUH) balance test, a water deficit session and a hypohydration (HYP) balance test. Hypohydration was achieved both by exercise-heat stress to 3% and 5% body mass loss (BML), and by a diuretic to 3% BML. Standing balance was assessed during quiet standing on a force platform with eyes open and closed. With eyes closed, hypohydration significantly decreased medial-lateral sway path and velocity by 13% (both p < .040). However, 95% confidence intervals for the mean difference between EUH and HYP were all within the coefficient of variation of EUH measures, indicating limited practical importance. Neither Vplasma loss nor Posm increases were associated with changes in balance. We concluded that standing balance was not altered by hypohydration.

Restricted access

Marcos Echegaray, Lawrence E. Armstrong, Carl M. Maresh, Deborah Riebe, Robert W. Kenefick, John W. Castellani, Stavros Kavouras, and Douglas Casa

This study assessed the plasma glucose (PG) and hormonal responses to carbohydrate ingestion, prior to exercise in the heat, in a hypohydrated state versus partial rehydration with intravenous solutions. On separate days, 8 subjects (21.0 ± 1.8 years; 57.3 ± 3.7 ml · kg−1 · min−1) exercised at 50% V̇O2maxin a 33 °C environment until a 4% body weight loss was achieved. Following this, subjects were rehydrated (25 ml · kg−1) with either: 0.45% IV saline (45IV), 0.9% IV saline (9IV), or no fluid (NF). Subjects then ingested 1 g · kg−1 of carbohydrate and underwent an exercise test (treadmill walking, 50% V̇O2max, 36 °C) for up to 90 min. Compared to pre-exercise level (294 mg · dl−1), PG increased significantly (>124 mg · dl−1) at 15 min of the exercise test in all trials and remained significantly elevated for 75 min in NF, 30 min more than in the 2 rehydration trials. Although serum Insulin increased significantly at 15 min of exercise in the 45IV trial (7.2 ± 1.2 vs. 23.7 ± 4.7 μIU · ml−1) no significant differences between trials were observed. Peak plasma norepinephrine was significantly higher in NF (640 ± 66 pg · ml−1) compared to the 45IV and 9IV trials (472 ± 55 and 474 ± 52 pg · ml−1, respectively). In conclusion, ingestion of a small solid carbohydrate load prior to exercise in the 4% hypohydration level resulted in prolonged high PG concentration compared to partial IV rehydration.

Restricted access

Matthew R. Ely, Robert W. Kenefick, Samuel N. Cheuvront, Troy Chinevere, Craig P. Lacher, Henry C. Lukaski, and Scott J. Montain

Heat acclimation (HA) reportedly conveys conservation in sweat micromineral concentrations when sampled from arm sweat, but time course is unknown. The observation that comprehensive cleaning of the skin surface negates sweat micromineral reductions during prolonged sweating raises the question of whether the reported HA effect is real or artifact of surface contamination.


To measure sweat mineral concentrations serially during HA and determine if surface contamination plays a role in the reported mineral reductions.


Calcium (Ca), copper (Cu), magnesium (Mg), and zinc (Zn) were measured in sweat obtained from 17 male volunteers using an arm bag on Day 1, 5, and 10 of a HA protocol. To study the role of contamination, sweat was simultaneously (n = 10 subjects) sampled twice daily from a cleaned site (WASH) and unclean site (NO WASH) on the scapular surface.


Sweat Ca, Cu, and Mg from Arm Bag trended progressively downward from Day 1 to Day 10 of HA (p = .10–0.25). Micromineral concentrations from the WASH site did not change between Day 1, 5, or 10 (Ca = 0.30 ± 0.12 mmol/L, Cu 0.41 ± 0.53 μmol/L; Zn 1.11 ± 0.80 μmol/L). Surface contamination can confound sweat mineral estimates, as sweat Ca and Cu from NO WASH site were initially higher than WASH (p < .05) but became similar to WASH when sampled serially.


Heat acclimation does not confer reductions in sweat Ca, Cu, Mg, or Zn. When the skin surface is not cleaned, mineral residue inflates initial sweat mineral concentrations. Earlier reports of micromineral reductions during HA may have been confounded by interday cleaning variability.

Restricted access

Lara A. Carlson, Samuel Headley, Jason DeBruin, Alex P. Tuckow, Alexander J. Koch, and Robert W. Kenefick

This investigation sought to study changes in leukocyte subsets after an acute bout of resistance exercise (ARE) and to determine whether ingestion of carbohydrate (CHO) could attenuate those immune responses. Nine male track-and-field athletes (21.1 ± 1.4 yr, 177.2 ± 5.5 cm, 80.9 ± 9.7 kg, 8.7% ± 3.8% fat) and 10 male ice hockey athletes (21.0 ± 2.2 yr, 174.3 ± 6.2 cm, 79.6 ±11.1 kg, 13.9% ± 3.73% fat) participated in 2 different ARE protocols. Both experiments employed a counterbalanced double-blind research design, wherein participants consumed either a CHO (1 g/kg body weight) or placebo beverage before, during, and after a weight-lifting session. Serum cortisol decreased (p < .05) at 90 min into recovery compared with immediately postexercise. Plasma lactate, total leukocyte, neutrophil, and monocyte concentrations increased (p < .05) from baseline to immediately postexercise. Lymphocytes decreased significantly (p < .05) from baseline to 90 min postexercise. Lymphocytes were lower (p < .05) for the CHO condition than for placebo. The findings of this study indicate the following: ARE appears to evoke changes in immune cells similar to those previously reported during endurance exercise, and CHO ingestion attenuates lymphocytosis after ARE.

Full access

Lawrence E. Armstrong, Carl M. Maresh, John W. Castellani, Michael F. Bergeron, Robert W. Kenefick, Kent E. LaGasse, and Deborah Riebe

Athletes and researchers could benefit from a simple and universally accepted technique to determine whether humans are well-hydrated, euhydrated, or hypohydrated. Two laboratory studies (A, B) and one field study (C) were conducted to determine if urine color ( U col ) indicates hydration status accurately and to clarify the interchangeability of U col , urine osmolality ( U osm ), and urine specific gravity ( U sg ) in research. U col , U osm , and U sg were not significantly correlated with plasma osmolality, plasma sodium, or hemato-crit. This suggested that these hematologic measurements are not as sensitive to mild hypohydration (between days) as the selected urinary indices are. When the data from A, B, and C were combined, U col was strongly correlated with U hg and U„sm. It was concluded that (a) U col may be used in athletic/industrial settings or field studies, where close estimates of U sg or U osm are acceptable, but should not be utilized in laboratories where greater precision and accuracy are required, and (b) U osm and U sg may be used interchangeably to determine hydration status.

Restricted access

Michael F. Bergeron, Carl M. Maresh, Lawrence E. Armstrong, Joseph F. Signorile, John W. Castellani, Robert W. Kenefick, Kent E. LaGasse, and Deborah A. Riebe

Twenty (12 male and 8 female) tennis players from two Division I university tennis teams performed three days of round-robin tournament play (i.e., two singles tennis matches followed by one doubles match per day) in a hot environment (32.2 ± 1.5   C ° and 53.9 ± 2.4% rh at 1200 hr), so that fluid-electrolyte balance could be evaluated. During singles play, body weight percentage changes were minimal and were similar for males and females (males -1.3 ± 0.8%, females -0.7 ± 0.8%). Estimated daily losses (mmol · day 1 ) of sweat sodium (Na+) and potassium (K+) (males, Na + 158.7, K + 31.3; females, Na + 86.5, K + 18.9) were met by the players' daily dietary intakes (mmol · day 1 ) of these electrolytes (males, Na + 279.1 ± 109.4, K + 173.5 ± 57.7; females, Na + 178.9 ± 68.9, K + 116.1 ± 37.5). Daily plasma volume and electrolyte (Na+, K + ) levels were generally conserved, although, plasma [Na+] was lower (p < .05) on the morning of Day 4. This study indicated that these athletes generally maintained overall fluid-electrolyte balance, in response to playing multiple tennis matches on 3 successive days in a hot environment, without the occurrence of heat illness.

Open access

Ricardo J.S. Costa, Kayla Henningsen, Stephanie K. Gaskell, Rebekah Alcock, Alice Mika, Christopher Rauch, Samuel N. Cheuvront, Phil Blazy, and Robert Kenefick

The study aimed to determine the effects of two differing amino acid beverage interventions on biomarkers of intestinal epithelial integrity and systemic inflammation in response to an exertional-heat stress challenge. One week after the initial assessment, participants (n = 20) were randomly allocated to complete two exertional-heat stress trials, with at least 1 week washout. Trials included a water control trial (CON), and one of two possible amino acid beverage intervention trials (VS001 or VS006). On VS001 (4.5 g/L) and VS006 (6.4 g/L), participants were asked to consume two 237-ml prefabricated doses daily for 7 days before the exertional-heat stress, and one 237-ml dose immediately before, and every 20 min during 2-hr running at 60% maximal oxygen uptake in 35 °C ambient conditions. A water volume equivalent was provided on CON. Whole blood samples were collected pre-, immediately post-, 1 and 2 hr postexercise, and analyzed for plasma concentrations of cortisol, intestinal fatty acid protein, soluble CD14, and immunoglobulin M (IgM) by ELISA, and systemic inflammatory cytokines by multiplex. Preexercise resting biomarker concentrations for all variables did not significantly differ between trials (p > .05). A lower response magnitude for intestinal fatty acid protein (mean [95% CI]: 249 [60, 437] pg/ml, 900 [464, 1,336] pg/ml), soluble CD14 (−93 [−458, 272] ng/ml, 12 [−174, 197] ng/ml), and IgM (−6.5 [−23.0, 9.9] MMU/ml, −10.4 [−16.2, 4.7] MMU/ml) were observed on VS001 and V006 compared with CON (p < .05), respectively. Systemic inflammatory response profile was lower on VS001, but not VS006, versus CON (p < .05). Total gastrointestinal symptoms did not significantly differ between trials. Amino acid beverages’ consumption (i.e., 4.5–6.4 g/L), twice daily for 7 days, immediately before, and during exertional-heat stress ameliorated intestinal epithelial integrity and systemic inflammatory perturbations associated with exercising in the heat, but without exacerbating gastrointestinal symptoms.