Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Robert McCunn x
Clear All Modify Search
Restricted access

Liam D. Harper and Robert McCunn

Recent work has espoused the idea that in applied sporting environments, “fast”-working practitioners should work together with “slow”-working researchers. However, due to economical and logistical constraints, such a coupling may not always be practical. Therefore, alternative means of combining research and applied practice are needed. A particular methodology that has been used in recent years is qualitative research. Examples of qualitative methods include online surveys, 1-on-1 interviews, and focus groups. This article discusses the merits of using qualitative methods to combine applied practice and research in sport science. This includes a discussion of recent examples of the use of such methods in published journal articles, a critique of the approaches employed, and future directions and recommendations. The authors encourage both practitioners and researchers to use and engage with qualitative research with the ultimate goal of benefiting athlete health and sporting performance.

Restricted access

Hugh H.K. Fullagar, Robert McCunn and Andrew Murray

While there are various avenues for performance improvement in college American football (AF), there is no comprehensive evaluation of the collective array of resources around performance, physical conditioning, and injury and training/game characteristics to guide future research and inform practitioners. Accordingly, the aim of the present review was to provide a current examination of these areas in college AF. Recent studies show that there is a wide range of body compositions and strength characteristics between players, which appear to be influenced by playing position, level of play, training history/programming, and time of season. Collectively, game demands may require a combination of upper- and lower-body strength and power production, rapid acceleration (positive and negative), change of direction, high running speed, high-intensity and repetitive collisions, and muscle-strength endurance. These may be affected by the timing of and between-plays and/or coaching style. AF players appear to possess limited nutrition and hydration practices, which may be disadvantageous to performance. AF injuries appear due to a multitude of factors—strength, movement quality, and previous injury—while there is also potential for extrinsic factors such as playing surface type, travel, time of season, playing position, and training load. Future proof-of-concept studies are required to determine the quantification of game demands with regard to game style, type of opposition, and key performance indicators. Moreover, more research is required to understand the efficacy of recovery and nutrition interventions. Finally, the assessment of the relationship between external/internal-load constructs and injury risk is warranted.

Restricted access

Robert McCunn, Hugh H.K. Fullagar, Sean Williams, Travis J. Halseth, John A. Sampson and Andrew Murray

Purpose: American football is widely played by college student-athletes throughout the United States; however, the associated injury risk is greater than in other team sports. Numerous factors likely contribute to this risk, yet research identifying these risk factors is limited. The present study sought to explore the relationship between playing experience and position on injury risk in NCAA Division I college football players. Methods: Seventy-six male college student-athletes in the football program of an American NCAA Division I university participated. Injuries were recorded over 2 consecutive seasons. Players were characterized based on college year (freshman, sophomore, junior, or senior) and playing position. The effect of playing experience and position on injury incidence rates was analyzed using a generalized linear mixed-effects model, with a Poisson distribution, log-linear link function, and offset for hours of training exposure or number of in-game plays (for training and game injuries, respectively). Results: The overall rates of non-time-loss and time-loss game-related injuries were 2.1 (90% CI: 1.8–2.5) and 0.6 (90% CI: 0.4–0.8) per 1000 plays, respectively. The overall rates of non-time-loss and time-loss training-related injuries were 26.0 (90% CI: 22.6–29.9) and 7.1 (90% CI: 5.9–8.5) per 1000 h, respectively. During training, seniors and running backs displayed the greatest risk. During games, sophomores, juniors, and wide receivers were at greatest risk. Conclusions: Being aware of the elevated injury risk experienced by certain player groups may help coaches make considered decisions related to training design and player selection.