Search Results

You are looking at 1 - 8 of 8 items for

  • Author: Robert P. Lamberts x
Clear All Modify Search
Restricted access

Robert P. Lamberts

In high-performance cycling, it is important to maintain a healthy balance between training load and recovery. Recently a new submaximal cycle test, known as the Lamberts and Lambert Submaximal Cycle Test (LSCT), has been shown to be able to accurately predict cycling performance in 15 well-trained cyclists. The aim of this study was to determine the predictive value of the LSCT in 102 trained to elite cyclists (82 men and 20 women). All cyclists performed an LSCT test followed by a peak-power-output (PPO) test, which included respiratory-gas analysis for the determination of maximal oxygen consumption (VO2max). They then performed the LSCT test followed by a 40-km time trial (TT) 72 h later. Average power output during the 3 stages of the LSCT increased from 31%, 60%, and 79% of PPO, while the ratings of perceived exertion increased from 8 to 13 to 16. Very good relationships were found between actual and LSCT-predicted PPO (r = .98, 95%CI: .97–.98, P < .0001), VO2max (r = .96, 95%CI: .97–.99, P < .0001) and 40-km-TT time (r = .98, 95%CI: .94–.97, P < .0001). No gender differences were found when predicting cycling performance from the LSCT (P = .95). The findings of this study show that the LSCT is able to accurately predict cycling performance in trained to elite male and female cyclists and potentially can be used to prescribe and fine-tune training prescription in cycling.

Restricted access

Benoit Capostagno, Michael I. Lambert and Robert P. Lamberts


To determine whether a submaximal cycling test could be used to monitor and prescribe high-intensity interval training (HIT).


Two groups of male cyclists completed 4 HIT sessions over a 2-wk period. The structured-training group (SG; n = 8, VO2max = 58.4 ± 4.2 mL · min−1 · kg−1) followed a predetermined training program while the flexible-training group (FG; n = 7, VO2max = 53.9 ± 5.0 mL · min−1 · kg−1) had the timing of their HIT sessions prescribed based on the data of the Lamberts and Lambert Submaximal Cycle Test (LSCT).


Effect-size calculations showed large differences in the improvements in 40-km time-trial performance after the HIT training between SG (8 ± 45 s) and FG (48 ± 42 s). Heart-rate recovery, monitored during the study, tended to increase in FG and remain unchanged in SG.


The results of the current study suggest that the LSCT may be a useful tool for coaches to monitor and prescribe HIT.

Restricted access

Benoit Capostagno, Michael I. Lambert and Robert P. Lamberts

Finding the optimal balance between high training loads and recovery is a constant challenge for cyclists and their coaches. Monitoring improvements in performance and levels of fatigue is recommended to correctly adjust training to ensure optimal adaptation. However, many performance tests require a maximal or exhaustive effort, which reduces their real-world application. The purpose of this review was to investigate the development and use of submaximal cycling tests that can be used to predict and monitor cycling performance and training status. Twelve studies met the inclusion criteria, and 3 separate submaximal cycling tests were identified from within those 12. Submaximal variables including gross mechanical efficiency, oxygen uptake (VO2), heart rate, lactate, predicted time to exhaustion (pTE), rating of perceived exertion (RPE), power output, and heart-rate recovery (HRR) were the components of the 3 tests. pTE, submaximal power output, RPE, and HRR appear to have the most value for monitoring improvements in performance and indicate a state of fatigue. This literature review shows that several submaximal cycle tests have been developed over the last decade with the aim to predict, monitor, and optimize cycling performance. To be able to conduct a submaximal test on a regular basis, the test needs to be short in duration and as noninvasive as possible. In addition, a test should capture multiple variables and use multivariate analyses to interpret the submaximal outcomes correctly and alter training prescription if needed.

Restricted access

Lieselot Decroix, Robert P. Lamberts and Romain Meeusen

Context: The Lamberts and Lambert Submaximal Cycle Test (LSCT) consists of 3 stages during which cyclists cycle for 6 min at 60%, 6 min at 80%, and 3 min at 90% of their maximal heart rate, followed by 1-min recovery. Purpose: To determine if the LSCT is able to reflect a state of functional overreaching in professional female cyclists during an 8-d training camp and the following recovery days. Methods: Six professional female cyclists performed an LSCT on days 1, 5, and 8 of the training camp and 3 d after the training camp. During each stage of the LSCT, power output and rating of perceived exertion (RPE) were determined. Training diaries and Profile of Mood States (POMS) were also completed. Results: At the middle and the end of the training camp, increased power output during the 2nd and 3rd stages of the LSCT was accompanied with increased RPE during these stages and/or the inability to reach 90% of maximal heart rate. All athletes reported increased feelings of fatigue and muscle soreness, while changes in energy balance, calculated from the POMS, were less indicative of a state of overreaching. After 3 d of recovery, all parameters of the LSCT returned to baseline, indicating a state of functional overreaching during the training camp. Conclusion: The LSCT is able to reflect a state of overreaching in elite professional female cyclists during an 8-d training camp and the following recovery days.

Restricted access

Robert P. Lamberts, Theresa N.C. Mann, Gerard J. Rietjens and Hendrik H. Tijdink

Iliac blood-flow restrictions causing painful and “powerless” legs are often attributed to overtraining and may develop for some time before being correctly diagnosed. In the current study, differences between actual performance parameters and performance parameters predicted from the Lamberts and Lambert Submaximal Cycle Test (LSCT) were studied in a world-class cyclist with bilateral kinking of the external iliac artery before and after surgery. Two performance-testing sessions, including a peak-poweroutput (PPO) test and a 40-km time trial (TT) were conducted before surgery, while 1 testing session was conducted after the surgery. Actual vs LSCT-predicted performance parameters in the world-class cyclists were compared with 82 symptom-free trained to elite male cyclists. No differences were found between actual and LSCT-predicted PPO before and after surgical intervention. However, there were differences between actual and LSCT-predicted 40-km TT time in the tests performed before the surgery (2:51and 2:55 min:s, respectively). These differences were no longer apparent in the postsurgery 40-km TT (2 s). This finding suggests that iliac blood-flow restrictions seem to mainly impair endurance performance rather than peak cycling performance. A standard PPO test without brachial ankle blood-pressure measurements might not be able to reflect iliac bloodflow restrictions. Differences between actual and LSCT-predicted 40-km TT time may assist in earlier referral to a cardiovascular specialist and result in earlier detection of iliac blood-flow restrictions.

Restricted access

Michael I. Lambert, Janet A. Hefer, Robert P. Millar and Peter W. Macfarlane

Amino acids are commonly ingested as ergogenic aids in the belief that they enhance protein synthesis and stimulate growth hormone release. The aim of this study was to determine the acute effect that amino acid supplements have on serum growth hormone (GH) concentration. Seven male bodybuilders reported to the laboratory on four occasions after an 8-hr fast and ingested, in random order, either a placebo, a 2.4-g arginine/lysine supplement, a 1.85-g ornithine/tyrosine supplement, or a 20-g BovrilR drink. Blood was collected before each treatment and again every 30 minutes for 3 hours for the measurement of serum GH concentration. On a separate occasion, subjects had an intravenous infusion of 0.5 fig GH-releasing hormone-kg ' body weight to confirm that GH secretory response was normal. The main finding was that serum GH concentrations were not altered consistently in healthy young males following the ingestion of the amino acid supplements in the quantities recommended by the manufacturers.

Restricted access

Nicholas Tam, Ross Tucker, Jordan Santos-Concejero, Danielle Prins and Robert P. Lamberts

Context: It is debated whether running biomechanics make good predictors of running economy, with little known about the neuromuscular and joint-stiffness contributions to economical running gait. Purpose: To understand the relationship between certain neuromuscular and spatiotemporal biomechanical factors associated with running economy. Methods: Thirty trained runners performed a 6-min constant-speed running set at 3.3 m·s−1, where oxygen consumption was assessed. Overground running trials were also performed at 3.3 m·s−1 to assess kinematics, kinetics, and muscle activity. Spatiotemporal gait variables, joint stiffness, preactivation, and stance-phase muscle activity (gluteus medius, rectus femoris, biceps femoris, peroneus longus, tibialis anterior, and gastrocnemius lateralis and medius) were variables of specific interest and thus determined. In addition, preactivation and ground contact of agonist–antagonist coactivation were calculated. Results: More economical runners presented with short ground-contact times (r = .639, P < .001) and greater stride frequencies (r = −.630, P < .001). Lower ankle and greater knee stiffness were associated with lower oxygen consumption (r = .527, P = .007 and r = .384, P = .043, respectively). Only  lateral gastrocnemius–tibialis anterior coactivation during stance was associated with lower oxygen cost of transport (r = .672, P < .0001). Conclusions: Greater muscle preactivation and biarticular muscle activity during stance were associated with more economical runners. Consequently, trained runners who exhibit greater neuromuscular activation prior to and during ground contact, in turn optimizing spatiotemporal variables and joint stiffness, will be the most economical runners.

Restricted access

Hein A.M. Daanen, Robert P. Lamberts, Victor L. Kallen, Anmin Jin and Nico L.U. Van Meeteren

Heart-rate recovery (HRR) has been proposed as a marker of autonomic function and training status in athletes. The authors performed a systematic review of studies that examined HRR after training. Five cross-sectional studies and 8 studies investigating changes over time (longitudinal) met our criteria. Three out of 5 crosssectional studies observed a faster HRR in trained compared with untrained subjects, while 2 articles showed no change as a result of training. Most longitudinal studies observed a corresponding increase in HRR and power output (training status). Although confounding factors such as age, ambient temperature, and the intensity and duration of the exercise period preceding HRR make it difficult to compare these studies, the available studies indicated that HRR was related to training status. Therefore, the authors conclude that HRR has the potential to become a valuable tool to monitor changes in training status in athletes and less well-trained subjects, but more studies and better standardization are required to match this potential.