Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Roberto Codella x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Gabriele Gallo, Luca Filipas, Michele Tornaghi, Mattia Garbin, Roberto Codella, Nicola Lovecchio, and Daniele Zaccaria

Purpose: To analyze the anthropometric and physiological characteristics of competitive 15- to 16-year-old young male road cyclists and scale them according to a dichotomous category of successful/unsuccessful riders. Methods: A total of 103 15- to 16-year-old male road cyclists competing in the Italian national under 17 category performed a laboratory incremental exercise test during the in-season period. Age, height, body mass, body mass index, peak height velocity, and absolute and relative power output at 2 mmol/L and 4 mmol/L of blood lactate concentration were compared between 2 subgroups, including those scoring at least 1 point (successful, n = 70) and those that did not score points (unsuccessful, n = 61) in the general season ranking. Results: Successful and unsuccessful riders did not differ anthropometrically. Successful riders recorded significantly higher absolute and relative power output at 2 mmol/L and 4 mmol/L of blood lactate concentration compared with unsuccessful riders. Successful riders were also significantly older and had advanced biological maturation compared with their unsuccessful counterparts. Conclusion: Power associated with blood lactate profiles, together with chronological age and peak height velocity, plays an important role in determining race results in under 17 road cycling. Physiological tests could be helpful for coaches to measure these performance predictors.

Restricted access

Gabriele Gallo, Mireille Mostaert, Emanuela Faelli, Piero Ruggeri, Sundeep Delbarba, Roberto Codella, Pieter Vansteenkiste, and Luca Filipas

Purpose: The aim of this study was to investigate the relationship between youth road cycling success and becoming a professional cyclist. Specifically, the authors sought to analyze (1) the differences in the success scores in youth categories between future professional (PRO) and future nonprofessional (NON-PRO) cyclists, (2) whether relative age effect influences youth road cycling career pathways, and (3) whether youth competition success could predict a future career as a professional cyclist. Methods: The number of points gathered in the annual national ranking of 1345 Italian cyclists in the U17, U19, and U23 categories were retrospectively analyzed. Participants were divided into 2 groups: PRO (n = 43) and future NON-PRO (n = 1302), depending on whether they reached the professional level. Results: PRO outperformed NON-PRO in all the youth categories considered (ie, U17, U19, and U23). Older cyclists within the same annual age group were not overrepresented in PRO and do not have an advantage over younger cyclists within all the competition years. The number of points gathered in youth competitions provides an indication of probability of becoming professional cyclists from U17 onward with the predictive value increasing with age category. Conclusions: Handling the transition to a new age group well (especially the U19–U23 transition), and therefore having success competing against older and more experienced cyclists, is an important factor for talent identification in youth cycling.

Restricted access

Gabriele Gallo, Manuel Mateo-March, Peter Leo, Antonio Campos-Donaire, Alexis Gandia-Soriano, Andrea Giorgi, Emanuela Faelli, Piero Ruggeri, Roberto Codella, Iñigo Mujika, and Luca Filipas

Purpose: To investigate the relationship of field-derived power and physical performance parameters with competition success in road cycling climbing specialists of age-related categories and to explore cross-sectional differences between high-ranked (HIGHR) climbing specialists of each category. Methods: Fifty-three male climbers participated in this study (junior [JUN], n = 15; under 23 [U23], n = 21; professional [PRO], n = 17). Training and racing data collected during the 2016–19 competitive seasons were retrospectively analyzed for record power outputs (RPOs) and RPOs after prior accumulated work. Results: In JUN, body mass, absolute RPOs, and relative RPOs were higher in HIGHR compared with low ranked (d = 0.97–2.20, large; P = .097–.001); in U23 and PRO, the percentage decrease in RPOs after 20, 30, 40, and 50 kJ·kg−1 was less in HIGHR compared with low ranked (d = 0.77–1.74, moderate–large; P = .096–.004). JUN HIGHR presented lower absolute and relative RPO-20 min ( η p 2 = .34 .38 , large; P = .099–.001) and higher percentage decrease in RPOs after prior accumulated work compared with U23 and PRO HIGHR ( η p 2 = .28 .68 , large; P = .060–.001); percentage decrease in RPOs after prior accumulated work was the only parameter differentiating U23 and PRO HIGHR, with PRO declining less in relative RPO-1 min, RPO-5 min, and RPO-20 min after 20 to 50 kJ·kg−1 ( η p 2 = .28 .68 , large; P = .090–.001). Conclusions: Superior absolute and relative RPOs characterize HIGHR JUN climbing specialists. Superior fatigue resistance differentiates HIGHR U23 and PRO climbers compared with low ranked, as well as PRO versus U23 climbers.

Restricted access

Gabriele Gallo, Manuel Mateo-March, Daniel Gotti, Ed Maunder, Roberto Codella, Piero Ruggeri, Emanuela Faelli, and Luca Filipas

Purpose: The aim of this study was to describe individual training characteristics, racing strategies, and periodization in preparation for the Tour de France in 2 world-class road cyclists finishing in the top 5 of the general classification. Methods: Week‐by‐week power meter training and racing data of 2 (A and B) road cyclists (age: 29 and 23 y; maximum oxygen consumption: 83 and 81 mL·min−1·kg−1; and relative 20‐min record power output: 6.9 and 6.5 W·kg−1) in the preparation phase (December–July/August) leading up to the Tour de France were retrospectively analyzed. Weekly volume and intensity distribution in power zones were considered. Results: Cyclists A and B completed 46 and 19 races, 22.5 (6.3) and 18.2 (5.1) h·wk−1, with a pyramidal intensity distribution of 81.0%–13.3%–5.7%, and 88.8%–7.9%–3.3% in zone 1–zone 2–zone 3. Cyclist B spent 14 days at altitude. Increased high-intensity volume and polarization index occurred during race weeks. During periods without racing, training intensity progressively increased. Strength training was performed during November and December but not during the following months. During tapering, total exercise volume and time at high intensity decreased. Conclusion: These data provide novel insights into the periodization of world-class road cyclists in advance of a top 5 placing in the Tour de France general classification.

Restricted access

Gabriele Gallo, Elisabetta Geda, Roberto Codella, Emanuela Faelli, Marco Panascì, Luis Eduardo Ranieri, Luca Pollastri, Stefania Brighenti, Luigi Molino, Ugo Riba, Livio Luzi, Piero Ruggeri, and Luca Filipas

Purpose: To investigate the effects of bilateral dorsolateral prefrontal cortex high-definition transcranial direct-current stimulation (HD-tDCS) on physiological and performance responses during exercise at the upper limit of the severe-intensity exercise domain in elite-level road cyclists. Methods: Eleven elite-level road cyclists (VO2peak: 71.8 [3.1] mL·kg−1·min−1) underwent the HD-tDCS or SHAM condition in a double-blind, counterbalanced, and randomized order. After 20 minutes of receiving either HD-tDCS on dorsolateral prefrontal cortex (F3 and F4) or SHAM stimulation, participants completed a 10-minute constant-load trial (CLT1) at 90% of the first ventilatory threshold and a 2-minute CLT (CLT2) at peak power output. Thereafter, they performed a simulated 2-km time trial (TT). Maximal oxygen uptake, respiratory exchange ratio, heart rate, and rating of perceived exertion were recorded during CLT1 and CLT2, whereas performance parameters were recorded during the TT. Results: In 6 out of 11 cyclists, the total time to complete the TT was 3.0% faster in HD-tDCS compared to SHAM. Physiological and perceptual variables measured during CLT1 and CLT2 did not change between HD‐tDCS and SHAM. Conclusions: HD-tDCS over the dorsolateral prefrontal cortex seemed to improve cycling TT performance within the upper limit of the severe-intensity exercise domain, suggesting that an upregulation of the prefrontal cortex could be critical even in this exercise intensity domain. However, the limited dimension and the high interindividual variability require further studies to test these putative ergogenic effects.